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Abstract 

One of the major challenges in analytical and biological sciences is to develop a device to 

obtain unambiguous chemical and structural properties of a material or a probe biomolecule 

with high reproducibility and ultra-high sensitivity. Moreover, in addition to such a high 

sensitivity, other cases such as minimum intrusiveness, small amounts of analyte, and short 

acquisition time and high reproducibility are key parameters that can be valued in any 

analytical measurements. Among the promising methods to achieve such endeavor,  

plasmon-mediated surface-enhanced spectroscopic techniques, such as surface-enhanced 

Raman spectroscopy (SERS), are considered as suitable options. Such techniques take 

advantage of the interaction between an optical field and a metallic nanostructure to 

magnify the electromagnetic (EM) field in the proximity of the nanostructure. This 

results in an amplified signal of the vibrational fingerprints of the adsorbed probe 

molecules onto the metallic surface. Keys to obtaining ultra-sensitive SERS measurements 

are the development of rationally-designed plasmonic nanostructures. Besides, a major 

challenge for controlled and reliable sensitive measurements of probe biomolecules on 

biological cells gives rise due to the intrinsic random positioning and proliferation of these 

cells over a substrate such as a glass coverslip.   

In this thesis, the rational design and development of a fluorocarbon thin film 

micropatterned platform is introduced for controlled programming of conventional and 

transfected cells proliferation over the substrate. They also provided high throughput capability 

of controlled neuronal network connections towards advanced imaging and sensitive detection of 

biomolecules of interest at nanoscale resolution. This micropatterned platform was also 

integrated with optimized plasmonic nanostructures fabricated by nanosphere lithography 

(NSL) for SERS biosensing of glycans using a Raman reporter over the positionally-

controlled single cells surfaces. In addition to providing controlled plasmon-mediated 

measurements, the fabrications of two newly-developed 3D plasmonic nanostructures have 

been introduced in this thesis. These are nanopyramids arrays fabricated by NSL and arrays 

of nanoholes with co-registered nanocones fabricated by electron-beam lithography (EBL). 

These approaches have been used not only for ultra-sensitive molecular detection at the 

monolayer level in a variety of configurations, but also towards label-free single molecule 

detection at sub-femtomolar concentrations.  
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Chapter 1  

1 General introduction 

1.1 Overview 

The discovery of Raman scattering was reported in 1920’s by Chandrasekhara .V. 

Raman, resulting from a vast range of studies on inelastic scattering of light in liquids 

and solids. It was not until 1923 that it was suggested by Adolf Smekal that light also gets 

scattered inelastically with wavelengths longer or shorter than the initial wavelength of the 

source excitation.
1,2 

The first Raman spectra and the resulting manuscript supporting this 

effect was published by C.V. Raman in 1928.
3
 This brought him the honor of winning a 

Nobel Prize in Physics in 1930. Further development of Raman spectroscopy was 

however peripheral for years significantly due to the weakness of typical Raman 

scattering processes to be detected in absence of a powerful light source and an efficient 

detector.
4 

Upon discovery of laser in 1960 and significant development in optical 

detection sensitivity, the progressive development of Raman spectroscopy over the past 

decades has led to a myriad of applications from fundamental research in physics to 

analytical measurements with extreme sensitivity. 

 

Chemical  information about structure,
5,6 

symmetry,
7 

bonding in molecules or crystals,
8-10 

and also the electronic environment
11 

of material based upon their vibrational 

fingerprints can be obtained by Raman spectroscopy as an analytical technique. Raman 

spectroscopy has emerged applications in multifarious fields such as chemical 

analysis,
12,13 

material sciences,
14,15 

biomedical applications
16,17 

and also art-related 

investigations.
18,19 

Noticeably, the intrinsic low efficiency of the inelastic scattering in 

Raman can be surpassed by using plasmonic platforms providing enhanced signals by 
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several orders of magnitude. In this context, the use of localized surface plasmon 

resonances play a key role in order to concentrate the light in the proximity of a metallic 

nanostructure that act as  a nanoantenna that locally enhance the electromagnetic (EM) 

near-field light.
20,21 

Upon illumination of the light on a noble metal surface, plasmon 

resonances occur from the optical response of the free conducting electrons over the 

surface of the metal. As a result, a confined electric field will be generated within the 

near-field of the surface of the metallic nanostructure. A molecule of choice located 

within this confined region of intensified electric field generates an enhanced Raman 

signal, which it roughly scales with the forth power of the excitation electric field.
22,23

 

Surface-enhanced Raman spectroscopy (SERS) has been introduced as a consequence 

of the discovery of this phenomenon as a revolutionary sensitive analytical technique in 

the early 1970s.
24,25

 

In SERS, the Raman scattering is typically enhanced up to a factor of 10
2 

to 10
14 

through locating the sample in close vicinity of the plasmonic nanostructures.
26-28 

SERS 

has emerged as a powerful technique with applications within multidisciplinary fields 

and with detection limits down to attomolar concentrations and even further to as-described 

single molecule detection.
29-32 

Beyond the increased sensitivity of molecules adsorbed 

onto a metallic surface, the use of plasmonic structures is also very useful to improve 

the spatial resolution in optical microscopy and spectroscopy measurements that are 

inherently limited by the diffraction limit of light.
33 

This limit, known as the Rayleigh 

criterion, is a function of the excitation wavelength, , and the focusing properties of the 

utilized microscopic objective.
34 

This dependence implies that the smallest distance that 

could be resolved in far-field measurement, including SERS, is in the range of /2, 

which is typically about 200-300 nm under  ideal experimental conditions.
35 

For this 

reason, many research groups have been developing new approaches to use efficiently 
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plasmonic nanostructures with the goal to improve the lateral resolution of the surface-

enhanced Raman measurements. 

1.2 Wide range of applications  

The power of SERS originates from its ability to identify chemical species and providing 

structural information in a wide range of fields. This includes materials science, 

biochemistry, life sciences, catalysis, and electrochemistry. We highlight here a few 

exciting applications of SERS in life sciences. SERS has emerged as a highly sensitive 

and selective method for the detection of a variety of biological samples.
36

 SERS 

biosensing, a wide range topic, has been reviewed in great detail in the literature.
37-39

 

SERS biosensors have been used for detection of different biological samples and 

diseases, including various cancers,
40-43

 Alzheimer’s disease,
44,45

 and Parkinson’s 

disease.
46,47

 Furthermore, SERS has been utilized in other aspects of life sciences 

including biomedical applications,
48,49

 cellular probing,
50-52

 in vivo cell probing,
53-55

 in 

vitro cell analysis,
56,57

 imaging of individual cells,
58,59

 differentiating cancer cells,
60

 

imaging of proteins,
61,62

 bacteria  and virus detection.
54,63

  

1.3 Scope of thesis 

The fabrication of SERS platforms have been developed using a variety of techniques for 

involving both top-down and bottom-up methodologies depending on the desired 

application. In top-down methods, the focus was mostly on 2D structures, which lacks the 

capability of trapping low concentration of a probe molecule within nano-scale regions of 

hot spots. Therefore, an approach towards developing a 3D plasmonic platform as a 

possible biosensor with high affinity of trapping low concentrations of a target molecule 

is of great interest and demand. In the case of bottom-up approaches, the studies that have 

been reported are mainly focused on using synthetic metallic colloidal nanoparticles 
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which provide an intrinsic random assortment of hot spots within the nanoparticles and 

over a substrate. More specifically, when dealing with biological cells, the random 

growth of cells over the substrate diminishes the accuracy of probing a molecule of 

interest over the cells using such plasmonic platforms. As a result, an approach towards 

organized programming of the biological cells growth on a plasmonic platform as a 

biosensor is of high interest. This provides controlled positioning of these cells on highly 

sensitive plasmonic windows on the substrate for further investigations of a molecule of 

interest over the cells using plasmon-mediated surface-sensitive spectroscopic techniques 

such as SERS. In this thesis, I propose original approaches by integrating plasmonic 

platforms into controlled biocompatible micropatterns for biosensing applications. I also 

provide distinct approaches for the fabrication of 3D plasmonic nanostructures for highly 

sensitive detections.  

A summary of the covered subjects in each chapter is as follows:  

In Chapter 2, the principles of chemical patterning of a surface for cell-based assays and 

also the theoretical background that is essential for thorough understanding of the SERS 

underlying principles are developed. Major surface patterning techniques and their 

comparison are first presented. The principles of Raman and fluorescence spectroscopy 

are briefly explained while the plasmonic properties of noble metals with the focus on 

localized surface plasmon are described theoretically. Principles of SERS have also been 

approached theoretically followed by a discussion of the proposed enhancement 

mechanisms. 

The experimental procedure of fabricating plasmonic platforms and experimental setup 

for performing SERS measurements are discussed in Chapter 3. This Chapter details the 

principles of the fabrication of 2D and 3D plasmonic nanostructures using two commonly 

used techniques of nanosphere and electron-beam lithographies.  
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The presented results in this thesis are organized in two categories. In Chapter 4, a 

developed cell micropatterning technique has been introduced with subsequent 

demonstration of integrated plasmonic sensors into these micropatterns in Chapter 5 for 

biosensing applications. In Chapters 6 and 7, the fabrication of two distinct plasmonic 

platforms has been described with the purpose of significantly improving the detection 

limit. The development of a 3D structure for ultra-sensitive SERS measurements with a 

higher affinity of trapping molecules at a low concentration is provided together with 

SERS measurements for a selected model molecule.    

Finally, I provide a summary of the presented works in Chapter 8 and critically review 

some of the emerging fields, where SERS can be of interest as well as the possible 

technical improvements yielding better reproducibility and better sensitivity of the SERS 

platforms for ultra-sensitive detections. I also discuss the potential future works for the 

projects presented in this thesis. 
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Chapter 2  

2 Principles of micropatterning techniques and surface-
enhanced spectroscopies 

The design and development of an efficient controlled plasmonic platform for ultra-

sensitive molecular and biomolecular applications requires a thorough understanding of 

various micropatterning and surface-enhanced spectroscopic techniques. Major chemical 

patterning methods for cell-based studies as well as optical and spectroscopic principles of 

plasmonic-mediated surface-enhanced techniques, in particular SERS are presented in this 

Chapter as a basis to support the research work that follows in this thesis. 

2.1 Chemically patterning surfaces for cell-based assays  

Advanced microfabrication techniques combined with chemical surface modifications 

have become widely used for investigations of cell interaction with their environment. 

There is a vast range of methodologies for patterning chemical and biological 

functionalities to a surface. Among them, many are based upon generating patterns of 

biologically active areas that promote protein and cell adhesion, surrounded by a protein 

resistant background to prevent cell adhesion.
1
 Some of the most conventional patterning 

methods are introduced here, along with recent applications in cellular studies. Cell 

micropatterning has been greatly explored over the past several years. This includes 

many different techniques emerging towards patterning combinations of adhesive or 

inhibitive materials or the direct immobilization of biomolecules. However, most of these 

techniques are limited to the type of substrate, and to their compatibility with inverted 

microscopes due to a lack of transparency. This is problematic for visualization and 

analysis of cells using optical microscopy.
2
 In addition, the adhesion promoting 

molecules or biomolecules present can potentially interfere in the analysis of the cells 
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while investigating cell interactions using spectroscopic techniques. Furthermore, direct 

patterning of biomolecules can have critical drawbacks: proteins can denature with time, 

and serum proteins can damage the pattern fidelity, likely due to protein replacement. 

Therefore, using a serum-free media would reduce the invasiveness of the investigations 

and would increase the durability, and stability of the produced patterns yielding better 

imaging or spectroscopic analysis.
3
 In this thesis, the development of a new cell 

patterning platform is introduced on a glass substrate, keeping it compatible for further 

integration of plasmonic sensors. Glass is an optimal substrate due to its optical 

transparency in the visible spectral range, its inherent hydrophilicity, and it is widely used 

in traditional cell culturing and optical microscopy studies. It also supports healthy cell 

function, and does not require any additional chemical or biological modifications to 

promote cell adhesion. Instead, the adhesion proteins essential for cell adhesion 

originates directly from the serum of the media. As opposed to mechanical positioning, 

this allows for natural cell adhesion, helping to maintain cell viability.
4
  

2.1.1 Photolithography 

Photolithography, also termed as optical or UV lithography, is perhaps the most 

conventional microfabrication technique. It generates patterned features that can be 

precisely controlled down to micron dimensions.
5
 This is used to transfer a desired 

pattern depicted on a mask to a substrate by UV irradiation of a photo-sensitive polymer 

called a photoresist. The photoresist can be either of “positive” or “negative” type.  In 

positive resist the UV-exposed area of the polymer is soluble in the developing solvent 

while it is the opposite in negative resist. The photoresist is first spin-coated onto the 

surface of a flat substrate to create a homogeneous thin film, and is then brought into 

contact with the mask. In a second step, the accessible areas of the photoresist are 

exposed by the UV source. These will be removed in a developing solvent to create a 
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patterned structure of photoresist revealing “windows” that provide access to the 

underlying substrate for further modifications. The patterned photoresist features can be 

used as a lift-off mask for patterning chemical species or biomolecules, in order to create 

amendable cell-repellent and cell-adhesive surfaces. Limitations and drawbacks to using 

photolithography to pattern cells include the use of organic solvent leading to 

denaturation of most biomolecules, and the substrates that can be patterned. Furthermore, 

there is always the concern about inefficiency of lift-off process leading to left-over 

photoresist residues after cleaning.
6,7

 

2.1.2 Microcontact printing 

Microscale stamps made of silicone elastomer poly(dimethylsiloxane) (PDMS) are used 

as templates in a group of methods known as soft lithography to create ordered 

functionalization patterns over large surface areas. The most common technique used is 

microcontact printing (µCP), for its simplicity, cost effectiveness, flexibility, and the 

ability to replicate submicron features with high fidelity on numerous types of 

substrates.
8  

PDMS is a liquid prepolymer at room temperature due to its low melting 

point (~ -50 °C) and glass transition temperature (~ -120 °C).
9
 The stamp is produced by 

pouring the silicone rubber over a master mold generated by UV photolithography.
10

 

After curing, the rubber stamp is peeled off the master, creating a complementary replica 

of the pattern. Subsequently, the stamp is “inked” with the molecules of interest by 

adsorption to the PDMS stamp. After being dried, the stamp is placed into contact with 

the substrate. This transfers the molecular layer directly from the stamp to the substrate.
11

 

In cell micropatterning applications, the used ink is a material that promotes cell adhesion 

and extracellular matrix proteins. However, the excavated regions can be backfilled with 

a passivating layer to prevent cell adhesion.
8
 The main drawback of µCP is the transfer 

efficiency is often less than 100%, with significant variations between experiments. Due 
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to the physisorption of most molecules stamped to the surface, exchange and degradation 

processes are likely in the cell culture environment. This results in diminished pattern 

resolution. Moreover, the biological activity of some biomolecules may be lost during the 

stamping process.
12,13

  

2.1.3 Microfluidic patterning 

Microfluidic patterning is a soft lithographic technique where an elastomeric stamp is 

employed. The designed stamp with desired microchannels is pressed into contact with 

the surface to be patterned. The areas in contact with the stamp are protected from the 

patterning solution, while fluid is delivered into the channels and transferred to sites that 

are unprotected by the stamp. This technique offers the easiest approach towards 

producing multi-molecule patterns in parallel. This gives ones an opportunity to use 

numerous materials placed in separate channels. As this method is performed in the liquid 

state, live cells can also be patterned in addition to adhesion components and 

biomolecules. In the meantime, it also provides a tool to investigate in-vitro dynamic 

conditions of the experiment.
14,15

 The beneficial aspect of conducting the experiment in a 

liquid state highlights the ability to precisely control the ligand density while the 

functionality of the biomolecules is preserved. However, there are certain disadvantages. 

These patterns often lose integrity over time once the stamp is removed, since the pattern 

geometries are limited to open network structures.
16,17

 Also, the solvent that circulates in 

the channels must be compatible with the chemical nature of the microfluidic pattern.
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Figure 2.1 Schematic illustration of three selected surface micropatterning 

techniques. 

Aside from these three major techniques, there are other patterning methods with quite 

similarities to usual aforementioned ones, but also with distinct alterations depending on 

the application of interest. These techniques are introduced as follows. 

2.1.4 Stencil patterning 

This technique mimics the similar process of microcontact patterning depicted in Figure 

2.1 with slight differences.
18

 A stencil is a thin membrane with empty spaces of a specific 

geometry and size. This acts as a template for the selective modification of the surface to 

be brought into contact with the surface to be patterned. In stencil patterning, the stencil 

is attached onto a substrate for direct patterning by deposition, etching or implantation of 

the substrate through the stencil apertures without any resist.
19

 The stencil itself protects 
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the substrate while the solutions enter the empty spaces to locally modify the surface. The 

patterning can be performed by the functionalization of different molecules or cell 

seeding directly to the substrate, without the use of solvents. After plating the cells on the 

stencil protected regions, the stencil is then manually peeled off, and the cell islands are 

in the same shape as the stencil. Traditionally, metallic materials were used for the 

membranes, despite the fact that they produced a loose seal with the substrate. In 

contrast, elastomeric stencils of PDMS have been introduced, and are far superior as they 

form seals with many types of surfaces. Aside from the many benefits and simplicity of 

this method, there are a few disadvantages including the fabrication complexity of high 

resolution patterns, the difficulty of handling the thin membranes, and the removal of the 

stencil could detach the cells. In addition, while the stencil is removed, the cells are free 

to migrate, sacrificing pattern fidelity.
2,20,21 

There are two major reasons reported in the 

literature for using stencil patterning. The first reason is the need for non-contaminated 

surfaces. Novel nanoscale structures and materials such as nanowires or nanodots 

deposited on ultra-clean surfaces require non contaminated environment by photoresists 

and solvents. The second reason is the need for high temperature process such as pulsed 

laser deposition (PLD) of ferroelectric materials used in cells for mass-storage 

applications and the variety of substrate materials including plastics, or other flexible 

materials for biological and chemical systems.
22

 

2.1.5 Inkjet patterning 

Commercial inkjet printers have been modified and combined with computer-aided 

design software in order to directly print adhesive molecules, proteins, molecules for 

electronic applications and even cell solutions on surfaces. The printer is equipped with a 

stage and a micropipette nozzle to dispense liquid in the programmed pattern. The 

amount of material that is deposited can be varied by changing the number of droplets 
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printed per spot, and features such as lines, dots, arrays, and gradients have been printed. 

Also, with the use of a multiple nozzle device, a multifunctional pattern is possible. The 

spot size and resolution of the patterns is greatly limited by the resolution of the printer, 

the nozzle diameter, as well as the liquid/solid interfacial tensions. The smallest spot size 

is still hundreds of microns, so it is only compatible for large arrays of cells. Moreover, 

when patterning cell suspensions, cells have been observed to die, likely due to 

dehydration of the drop, as well as damage occurring during the delivery.
23-25  

2.1.6 Plasma processes 

Plasmas have been utilized for the surface modification of many types of materials and a 

wide range of applications. The properties of the plasma can be readily guided towards a 

specific objective simply by altering different conditions such as composition of the feed 

gas, and the properties of the substrate.
26

 Plasma is a gas which consists of a high 

population of charged particles, supplying a highly ionized gas. This medium includes 

both positive and negatively charged particles, despite maintaining macroscopic 

neutrality. Due to the number of charge-carrier particles, the plasma has a high electrical 

conductivity. Other than ions, the reactive species found in a plasma include neutral and 

radical molecules, both are which take part in plasma modifications.
27

 

There are three major areas where plasmas can be utilized for surface modifications and 

patterning. The first is the use of the reactive environment to chemically modify the 

surface of a material. By altering the surface functionalities using plasma bombardment, 

many different reactions can be performed providing new functional groups such as 

amino- or hydroxyl- functionalities, which are proficient for immobilizing 

biomolecules.
28
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A second capability of plasma treatment is to use the species generated in the plasma to 

remove or etch material off the surface. This is similar to a sputtering mechanism, 

wherein the species bombarding the surface exchanges momentum with atoms in the 

surface upon collision. If the energy of the impinging particle is greater than the surface 

binding energy, an atom will be ejected from the surface.
29 

The final mode of plasma 

modifications is the use of a polymerizable gaseous or vaporizable monomer to deposit 

material. The plasma supplies sufficient energy to the monomer fragment in order to 

initiate polymerization, and a polymer thin film is deposited. Based on the properties of 

the feed gas, either cell-adhesive or cell-repellent functionality can be introduced to the 

surface.
30,31

 

 

Figure 2.2  Schematic description of three types of plasma processes. The active 

species in the plasma are used to: a) chemically modify the surface, b) remove the 

top layer of the exposed surface, and c) deposit polymerized material on the exposed 

surface. 

Plasma surface modifications can also be combined with a physical mask in order to 

pattern the surface. A thin metallic mask with empty regions shaped in the desired feature 

is placed in contact with the substrate, and then exposed to the plasma. The active species 



www.manaraa.com

18 

 

 

 

 

 

will therefore only interact with the substrate in areas that are unprotected by the mask.
32 

The three aforementioned methods can be used to (i) chemically modify the exposed 

regions with different functional groups (Figure 2.2A) (ii) reveals a bi-layered substrate 

by removal of the top layer (Figure 2.2B), (iii) selective deposition of a new material 

using plasma polymerization (Figure 2.2C).    

Table 2.1 Summary of microfabrication techniques used for cellular patterning 

Technique Recent Selected Applications 

Photolithography 

Patterning of 3D-formed polycarbonate films for targeted 

cell guiding.34 Cracking-assisted photolithography for 

mixed-scale patterning and nanofluidic applications.35 

Microcontact Printing 

Protein patterning on hydrogels for application in cardiac 

differentiation.36 Tuning cell–surface affinity to direct cell 

specific responses to patterned proteins.37 

Microfluidic Patterning 

Anisotropic crystalline protein nanolayers for patterned co-

cultures of adherent and non-Adherent cells.38 Differentiation 

of neuroepithelial stem cells into functional dopaminergic 

neurons.39 Rapid quantification of live cell receptors.40 

Stencil Patterning 

Assessment of multidrug resistance on cell co-culture 

patterns.41 Control of collective cell migration in epithelial 

monolayers.42 Patterning and interrogating neural circuitry.43 

Inkjet Patterning 

Inkjet-printed silk nest arrays for cell hosting.44 Complex 

heterogeneous tissue constructs containing multiple cell 

types.45 

Plasma Processes 

Directed positioning of single and connected transfected and 

non-transfected cells and neuronal projections using surface 

patterning by plasma-deposited fluorocarbon (FC) thin 

films.46,47 Fibroblast/myoblast co-cultures by selective 

fibronectin adsorption32 
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As with any of the techniques mentioned, there still are certain limitations to plasma 

processes. The etch rates of different etchant gases are highly variable, and it can be 

difficult to produce a highly stable plasma polymer layer. It is also requires another step 

to determine the optimal conditions for each method as compared to the simple dip and 

rinse process of the other techniques. Finally, close contact with the physical mask is 

crucial for pattern production, and the lateral and vertical resolution is limited by the 

mask.
33

 A summary of the recent applications in cellular pattering reported for the 

introduced microfabrication methods are shown in Table 2.1.  

 

2.2 Principles and theory of surface-enhanced 

spectroscopies 

The design and development of an efficient nanostructure for surface-enhanced Raman 

spectroscopy (SERS) requires a clear understanding of the principles of spectroscopy, in 

particular Raman spectroscopy, and also associated plasmonic enhancement processes 

that yield ultra-sensitive Raman measurements. The optical and spectroscopic principles 

of SERS and plasmonic structures are thus presented in this chapter as a base of support 

to the research work that follows in this thesis. 

2.2.1 Raman spectroscopy 

The required energy for vibrational and electronic transitions in a molecule is dependent 

on the interaction between light and matter. This is depicted in the Jablonski energy 

diagram shown in Figure 2.3. Matter can absorb the impinged light to its surface. 

Absorption of infrared (IR) light in the mid-infrared range (4-20 μm wavelength range) 

excites molecular vibrations within the ground electronic states. UV-visible light (280-

700 nm) excites electrons to higher energy levels followed by relaxation through distinct 
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pathways including non-radiative relaxations and radiative fluorescence and 

phosphorescence emissions.
48

 Light gets scattered by the exposed molecules
 
when the 

energy of an electronic transition does not match the wavelength of the incident light. 

Rayleigh scattering is the process when the majority of the scattered photons are 

elastically scattered with energies equal to the energy of the incoming light. However, one 

out of 10
6
-10

8 
photons approximately are scattered inelastically with distinct optical 

frequencies from the incident light.
49,50

 This inelastic light scattering occurred by 

molecular vibrations is called Raman scattering.
49

 

Upon Raman scattering, quantized energy states of the scattering molecules interact with 

the incident light, yielding a scattered photon with either less or more energy relative to 

the incident photon. These processes are defined as Stokes and anti-Stokes Raman scattering 

respectively.
49,51

 In Stokes Raman scattering, the photons undergo a transition from lower 

to higher energy level and vice-versa for anti-Stokes Raman scattering. Based upon 

Boltzmann distribution, excited vibrational energy levels are less populated than the 

ground state. Therefore, anti-Stokes is less intense due to the occurred scattering from a 

less populated state. These three modes of Raman scattering are shown in Figure 2.3. For 

Raman scattering, (excluding resonance Raman), the scattering process begins from an 

intermediate state. This is a time-dependent superposition of molecular electronic states 

called virtual energy level or state. The energies of these states do not match the energy of 

the present excited electronic levels in the scattering system. In resonance Raman 

scattering, however, the energy of the incoming source of irradiation matches an existing 

electronic transition. 

The theory of Raman spectroscopy is extended from classical view to fully quantum 

mechanical approach.
50,52-55 

The presented background of Raman in this section is, 
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however, adjusted to the level of knowledge which is required to understand the work in 

this thesis. 

 

Figure 2.3 Jablonski Diagram demonstrating the variety of light-matter interactions 

2.2.2 Fluorescence spectroscopy  

Fluorescence spectroscopy is of great interest due to its vast applications in the field of 

chemistry, life sciences, photonics, and materials science.
56-59

 Fluorescence occurs when 

a fluorescent capable material (fluorophore) is excited into a higher electronic state by 

absorbing an incident photon. The excited photon can return to the ground state by 

radiative relaxation through emission of a photon, which is called fluorescence. 

Fluorescence occurs when there is no change of spin multiplicity between the two levels 

of the transition. The emission usually occurs from the ground vibrational level of the 

excited electronic state and goes to an excited vibrational state of the ground electronic 

state. Thus, fluorescence signals occur at longer wavelengths compared to absorption. 

This is due to the energy loss in the excited state through vibrational relaxation.  The 

relative intensities of the fluorescence signals provide information about structure and 

environments of the fluorophores. Noteworthy, the absorption is very fast while lifetime 

of fluorescence is approximately 0.1-100 ns with respect to other processes such as 
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radiative relaxation from triplet excited state to the singlet ground state so-called 

phosphorescence, which occurs in a microsecond time scale.
60

  

2.2.3 Plasmonic resonances in metal 

The field of plasmonics is described as the general area that aims at controlling the 

coupling between an EM wave and the free electrons of a metal. Its application to 

spectroscopy is numerous and is often referred to as molecular plasmonics and aims at 

benefitting from the local EM field enhancements that occur in nanostructured metals. To 

better understand the mechanism at work behind the surface-enhanced techniques, we 

introduce in the next chapters the underlying principles of a surface plasmon (SP) and 

localized surface plasmon resonance (LSPR). 

2.2.3.1 Plasmon 

The interaction of EM radiation with a metallic nanostructure yields the oscillation of the 

free conduction electrons of the metal out-of-phase relative to the driving electric field of 

the incident radiation.
61

 A plasmon is therefore a collective oscillation of the conduction 

electrons in a metal in response to an EM disturbance, such as an optical field. A 

displacement of the free electrons with respect to the positively charged lattice in metal 

occurs by this oscillation. As a result, at defined optical frequencies, the free electrons can 

sustain surface and volume charge density oscillations. The free motion of the metal 

conduction electrons within the bulk of the metal is included in the physical process 

involved in plasmon resonance. Upon irradiation by a laser with angular frequency of , 

the free conduction electrons go through a displacement  ⃗ ⃗t)   ⃗   
    ) that generates 

a dipole moment  ⃗ through  ⃗    ⃗ where   and  ⃗   denotes the electron charge and 

position in absence of an incident EM field, respectively. The generated dipole moment 

proceeds to a macroscopic  ⃗      ⃗ where    is the number of electrons per unit of 
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volume. For materials with dimensions larger than the wavelength of the incident light (d 

>>λ), these oscillations occur at the plasma frequency (  ), as described in (1). 

Oscillation of the metal free electrons occur at a certain frequency,   , which is termed 

as plasmon frequency and is defined as:
62

  

 

                                                          
 

  
 √

    

    
         (1) 

 

where    is the permittivity or the dielectric constant of free space and me represents the 

effective mass of an electron. The complete characterization of the electron oscillation 

requires solving the equation of motion for electrons under the incident EM field which is 

beyond the scope of this thesis and has been studied in detail in the literature.
61,63,64

  

2.2.3.2 Surface Plasmon (SP) 

Plasmon takes place in the form of an SP at the interface between a metal surface and a 

dielectric material such as air or glass.
62 

These are light waves that are trapped on the 

surface because of their interaction with the free electrons of the conductor, usually a 

metal. Strictly speaking, they should be called surface plasmon polaritons (SPPs) to 

reflect this hybrid nature. The term "surface plasmon polariton" explains that the wave 

includes both charge motion in the metal called SP, and EM wave in the air or dielectric, 

which is termed polariton.
65

 Originally, SPs derive from collective oscillations of the 

electron density at the metal surface. Higher angles of incidence (which implies that the 

wavevector k of the incident radiation is nearly parallel to the surface) couple most 

efficiently as a consequence of excited SP by the oscillating electric field of the incident 
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light.
62 

Plasmonic oscillations at the metal-dielectric interface can significantly enhance 

the optical near-field in the vicinity of the metal surface. As mentioned, SPP appears as a 

combination of an EM wave and surface charges as depicted in Figure 2.4. 

 

Figure 2.4 Illustration of propagating surface plasmon at the interface between 

metal surface and a dielectric. 

The generated EM field at the metal surface consists of transverse magnetic field parallel 

to the interface. More importantly, the surface charge generation requires the presence of 

an electric field normal to the surface. As a consequence, there will be an evanescent SP 

field component perpendicular to the surface. This gets enhanced near the interface and 

decays rapidly with distance away from it into the two media.
66 

For an SP to be detectable 

at the metal-dielectric interface, the complex dielectric constant of the metal has to have a 

negative real and a positive imaginary part, which is the case for noble metals.
67,68

 

Of different available metals, gold and silver are widely used as their plasmon frequency 

is in the UV-Visible-Near IR range, making them ideal candidates for applications in 
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vibrational spectroscopy. The dielectric complex function of gold and silver are shown in 

Figure 2.5. The real and imaginary parts of the dielectric constants are calculated using 

the Lorentz-Drude model which is commonly used to characterize the motion of the free 

electrons inside an EM field.
61 

 

 

Figure 2.5 Real and imaginary dielectric functions of gold and silver according to 

the Lorentz-Drude model.
69

 



www.manaraa.com

26 

 

 

 

 

 

As shown in Figure 2.5, the imaginary part of the dielectric constant for gold and silver 

are quite similar, however, small differences between these values at each wavelength 

leads to a significant differences in the plasmonic behavior of the two metals.  

2.2.3.3 Surface plasmon excitation 

SP excitation occurs by impinging photons on the surface of a metal. However, this 

phenomenon does not simply occur optically. On a smooth metal-air interface, light 

cannot excite or couple to SPs. This owes to the fact that light momentum is not 

sufficient to couple to SP. Based upon energy conversion, the dispersion relation of 

SP on a smooth metal film can be expressed by: 

| ⃗⃗  |   | ⃗⃗ |√
    

     
                                                    (2) 

where d and m are the dielectric constant and function of dielectric and metal, 

respectively. The free space wavenumber of the incident excitation photon describes 

as  ⃗⃗   
 

 
. The dispersion curves of light and SP are shown in Figure 2.6A. 

As shown in Figure 2.6A, light cannot excite SPs at the interface between metal and 

dielectric since SP curve is located outside the accessible region surrounded by the 

light line. Features such as prisms, gratings, or surface roughness are necessary to 

increase the momentum of light to excite SPs, since at any specific wavelength, SPs 

have higher momentum than incident light at the dielectric-metal interface.
66,70

 In the 

case of an array of periodic holes in a metal film, such as a two-dimensional grating in 

a metal film, the grating structure provides an increase in light momentum, which 

results in coupling of light to SP. When a plane wave impinges on a grating structure 

with a square lattice arrangement, the dispersion relation between light and SP on a 

metallic grating structure is expressed by: 
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 ⃗⃗    ⃗⃗        ⃗⃗    ⃗⃗             (3) 

where  ⃗⃗      is the in-plane component of the wave vector of the incident light, 

    
 

 
.
66,71

  The reciprocal lattice wave vectors  ⃗⃗  and  ⃗⃗  describe a square lattice 

when | ⃗⃗ | = | ⃗⃗ | = 
  

 
, where p is the spacing between adjacent nanoholes, and i and j are 

integers expressing the scattering mode indices (some examples of i and j are illustrated in 

Figure 2.7). Inserting equation (2) into equation (3) results in the dispersion relation 

between light and SP, which is formulated as:  

| ⃗⃗  |   [(
  

 
   ( )    

  

 
)
 

  ( 
  

 
)
 

]
   

  | ⃗⃗ |√
    

     
                   (4)  

 

Figure 2.6 (A) Dispersion curves of SP and light line (=ckx), sp is a SP frequency. 

(B) Two-dimensional grating of a square lattice holes: (p) is the spacing between 

adjacent holes and (a) is the width of holes. 
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2.2.3.4 Extraordinary optical transmission of sub-wavelength hole 
arrays 

An array of periodic sub-wavelength holes fabricated in an optically thick metal film 

results in an extraordinary optical transmission (EOT) phenomena described by Thomas 

W. Ebbesen in 1988.
71

 His observation was that light was transmitted by sub-wavelength 

structures significantly more than what it should have been considering solely the 

diffraction limit of light. This unique optical property surpasses the diffraction limit of 

light owing to the excitation of SP waves occur at the metal-dielectric interface. This 

excitation occurs because of momentum matching between the SP and the light as a 

consequence of the periodic arrangement of the sub-wavelength holes.
71

 As a result, the 

coupling of the light to the SP and evanescent transmission occurs through the sub-

wavelength hole array. This ends up to radiation of the decoupled light from SP to free 

space. For a normally incident plane wave on an array of periodic sub-wavelength holes 

or a grating with square lattice arrangement, the wavelength at the SP excitation modes is 

expressed by: 

 λ    
 

√     
√
    

     
                                          (5) 

 

This equation can then be used to estimate the EOT positions of sub-wavelength hole 

arrays for various SP excitation modes (i ,j) when incident light is normal to the surface 

of hole arrays.
71

 Noteworthy, the various SP excitation modes are mainly dependent on 

the direction of the light wave vector (Kx). For instance, as shown in Figure 2.7, when 

the wave vector of the light (Kx) is along the x-axis, various (i, j) SP excitation modes 

related to metal/air or metal/substrate interfaces can be described. The (+1,0), (-1,0), 

(0,±1), (+1,1), and (-1,1) are different grating modes, resulting in a variety of SP 

excitation modes from metal/air or metal/substrate sides by the light as shown in Figure 
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2.7. Although, there are other grating modes such as (+2,0) and (-2,0) which are not 

illustrated in Figure 2.7. In this example, the (±1,0) SP excitation modes are parallel to 

the wave vector of the light (Kx) while the (0,±1) SP excitation modes are perpendicular 

to the Kx. However, when the light is normal to the surface of the sub-wavelength hole 

array, the (±1,0) and (0,±1) SP excitation modes lead to a spectral overlap in the optical 

transmission spectra of the structure and a single resonance called (1,0) EOT peak. This 

is similar for (+1,1), and (- 1,1) when the light is normal to the surface of the sub-

wavelength hole array. 

 

Figure 2.7 A 2D sub-wavelength hole array in a metal film on a substrate in a square 

lattice arrangement. p is the spacing between two adjacent holes, a is a width of each 

hole, Kx wave vector of the light is along the x-axis, and (+1,0), (-1,0), (0,±1), (+1,1), and 

(-1,1) are various (i, j) grating modes. 

Similar to the calculation of EOT positions, a transmission minimum (Wood’s anomaly) 

happens before each EOT at a shorter wavelength. The transmission minimum is caused 

by the diffraction of light by the grating and its propagation in the dielectric. The 

diffracted wave becomes tangent to the grating and propagates within the dielectric when 
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the transmission minimum occurs. As a consequence, the diffracted wave matches the 

grating periodicity: 

      
 

 
√      ⃗⃗     ⃗⃗             (6) 

where d is the dielectric constant of propagation medium. The position of the 

transmission minimum for a sub-wavelength hole array is expressed by 

     λ     
 

√     
 (  )

                         (7) 

The EOT or resonance properties of sub-wavelength hole arrays can be characterized by 

the resonance position, resonance transmission efficiency, resonance steepness, 

resonance bandwidth, and enhanced electric field at the edges of sub-wavelength holes at 

the resonance wavelengths. All these properties of a sub-wavelength hole array play a 

key role in the efficiency of its applications. However, resonance properties depend 

greatly on composition of the metal and dielectric materials, sub-wavelength hole shapes, 

and different geometrical arrangements of sub-wavelength holes. Many studies have 

reported the effect of the geometrical parameters of sub-wavelength hole arrays in 

various metal films by means of simulation, experiments, and theoretical calculation.
72-74

 

The equations developed above are of great importance to understand the device 

described in Chapter 7.  

2.2.3.5 Localized surface plasmon resonance (LSPR) 

LSPR gets excited when an SP is confined to a nanostructure with dimensions comparable 

to the wavelength of the light.
62 

In LSPR, incident light promotes the free electrons of the 

metal nanostructure to oscillate collectively with respect to the incident electric field upon 

which they experience a change in their momentum. The collective oscillations create 
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charge accumulation at the surface. In addition, when these oscillations are coupled 

between neighbouring nanostructures, the electric field is locally enhanced inside the 

interparticle gaps. An example of LSPR generated within the gaps between gold 

nanopyramids in hexagonal arrays is illustrated in Figure 2.8.
75  

 

Figure 2.8 Illustration of localized surface plasmon in metal nanostructures (A) 

False-colored SEM image of tetrahedral gold nanopyramids fabricated by 

nanosphere lithography over an Indium Tin Oxide (ITO) surface (B) finite-

difference time-domain (FDTD) simulation of a single hexagonal array showing the 

confinement of the electric field at the surface of a bowtie and within the gaps 

between the neighbouring nanopyramids. The image in part A is adapted from 

reference 53 with permission from American Chemical Society publishing group. 

There are two critical parameters related to LSPR that should be taken into account in the 

case of metallic nanostructures, with a particle size comparable to the incident EM 

wavelength of light (d < λ). The first parameter arises from the fact that LSPR is sensitive 

to the dielectric environment and the complex permittivity of the metal, similar to SP.
68
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In the meantime, the EM field can penetrate the nanoparticle. As a result, a shift occurs in 

the metallic electron cloud with respect to the center of the nanostructure generating an 

oscillator, as illustrated in Figure 2.9.  

 

 

Figure 2.9 Localized surface plasmon resonance (LSPR) model for metallic 

nanosphere. 

This leads to an LSPR frequency that is typically found in the Visible-NIR range in noble 

metals.
62,68,76 

The second effect of LSPR refers to a change in amplitude of the EM field. 

This is greatly enhanced by several orders of magnitude at nanoscale regions on the 

surface, known as “hot spots.” These regions present an evanescent nature, as the 

intensity of the field rapidly decays with distance.
62,76 

Mie’s analytical solution to 

Maxwell’s equations in the scattering and absorption of light by spherical particles is 

usually utilized for the characterization of LSPR.
77 
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According to the Mie theory, if the diameter of the nanoparticles are considerably smaller 

than incident EM wavelength of light (d << , total scattering (sca), extinction (ext), and 

absorption cross-sections(abs)  of a nanosphere are defined as:
62,63,68,78 
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                                               (10) 

 

According to the equations (8-10), optical properties of metallic nanoparticles are 

described as a function of the dielectric constants of the metal and the environment, as 

well as the geometrical parameters including the shape factor ( ) and volume (V) of the 

nanoparticles. These equations are typically used for estimating the optical response of 

systems to LSPR. In addition, LSPR can be accumulatively enhanced when the 

interparticle distances between the nanoparticles are small enough to allow for coupling 

of the neighboring hot spots.
78,79

 

In summary, a fundamental understanding of plasmon and in particular localized surface 

plasmon (LSP) is essential for the fabrication of active SERS platforms in order to 

improve the sensitivity of Raman scattering. Any controlled way to confine a plasmon 

with defined features including frequency, amplitude and phase of the field at the 
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extremity of the sharp nanostructures to generate nanoantennas is of great benefit 

specifically in the field of highly sensitive spectroscopic techniques.  

2.2.4 Surface-enhanced Raman spectroscopy (SERS)  

More than forty years ago, Fleishmann et. al observed an enhancement of the Raman 

signal (around 10
5
 times) of pyridine adsorbed onto the surface of a roughened silver 

electrode.
80

 This enhancement was attributed to the increase in the surface area of the 

roughened electrode. It was not until 1977, when the groups of both Van Duyne and 

Creighton performed similar experiments to that of Fleischmann, that the nature of the 

enhancement was determined.
81,82

 However, three years later, both groups found that the 

enhancement of the Raman signal could not occur with just an increase in surface area, 

and SERS was subsequently proposed.
78 

In doing so, the field of surface-enhanced 

spectroscopies, such as surface-enhanced Raman (SERS), surface-enhanced fluorescence 

(SEF), and surface-enhanced infrared absorption (SEIRA) were born. A substantial 

interest has emerged in SERS subsequent to the unraveling of the possibility of using 

SERS for single molecule detection (SMD), reported in 1990s.
83-85

 This has reinforced 

SERS as a powerful analytical tool and a broad active research field due in part to the 

development of nanofabrication methods.  

2.2.4.1 SERS enhancement mechanisms 

The essential localized enhancement of electric field to enhance the weak inelastic 

scatterings in Raman and increasing the sensitivity of this spectroscopy, originates from 

different sources. This includes the power of the incident light, enhancement of the 

Raman scattering, and also the modification of the scattering process. The first two 

mentioned factors are known to have an EM mechanism,
86-97

 while the third  is usually 

categorized as a chemical mechanism.
96-99 

These mechanisms, involved in SERS, are 
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very well described in the literature by Moskovits and other researchers and will be 

briefly reviewed in the following sections.
62,78,86,91,92,100

 
 

2.2.4.1.1 Electromagnetic Mechanism 

The EM mechanism arises from the plasmon resonance generated on a metallic 

nanostructure upon illumination by a light source, for example, a laser.
101,102 

This 

mechanism has the greatest contribution with enhancement factors (EFs) of  4 to 8 orders 

of magnitude.
100 

The sharp metallic plasmonic nanostructures act as optical nanoantennas 

that convert freely propagating optical radiation into localized energy and vice versa.
103 

When a sample or a molecule of interest is located in the vicinity of the nanoantenna, 

both incident light and Raman scattering are enhanced the same way. As a result, both 

the incident and the Raman scattering are both enhanced equally yielding a Raman 

intensity enhancement that scales with the fourth power of the local electric field. The 

optimum enhancement occurs if both the incident and the scattered light are in resonance 

with the antenna. At larger distances from the antenna, the resonance is damped.
104 

The 

enhancement of the electric field in SERS is therefore, a combination of three different 

effects. These include the lightening rod effect, the excitation of LSP, and the antenna 

resonance effect. 

 

The dielectric function changes from metal to metal as outlined in Figure 2.5. As such, 

the intensity of the EM field from LSPR is highly sensitive to a change in the wavelength 

of light (ELSPR(λ)). Therefore, once a molecule is adsorbed onto the surface of a metallic 

nanostructure and is irradiated with an excitation source, the intensity of the incident field 

(E0(λ)
2
) is enhanced with respect to (ELSPR(λ)), as well as the Raman scattering light 

(ELSPR(λ±λR)), as described below: 
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When both the incident beam and the scattered Raman signals are near that of the LSPR 

resonance wavelength (λLSPR), the maximum enhancement due to the EM mechanism will 

occur.
68,105

                                                                   

The lightening rod effect is influenced by the shape of the nanostructure or the 

nanoantenna. The very sharp apex or edges of the metallic nanostructure called 

nanoantenna, generates highly localized surface charge densities that enhance the 

electric field locally at the sharp end of the metallic nanoantenna. This can be attributed 

to the gap size of the two facing nanoantennas such as facing bow-tie assemblies of 

nanotriangles or nanoparticles in close proximity. By decreasing the gaps between 

nanoantennas, this effect can be enhanced. The incident light drives the metal free 

electrons along the polarization direction. Because the charge density is zero inside a 

metal at any instant of time, charges accumulate on the surface of the metal.
106

  

As mentioned earlier in section 2.2.3.2, the SP is efficiently excited if the wavelength of 

the laser matches the plasmon resonance(s) of the metal. Such plasmon resonances 

depend on the material property and the shape of the nanoantennas. Sharper objects with 

a higher aspect ratio generate stronger confined fields.
107,108

 Excitation of the antenna 

resonance depends on the wavelength of the incident light. In this case, a highly 

localized and enhanced electric field is observed at sharp edges of the nanostructures, so 

called nanoantennas.
109

 The polarization of the incident light with respect to the shape of 

the nanostructure is also playing a pivotal role.
75,110

 A more detailed description of the EF 

and the experimental method to estimate the values in complex nanostructures are 

described in Chapter 6 and 7.  
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Despite the fact that the EM mechanism dominates the enhancement mechanism at work 

for SERS, there are some observations that cannot be explained by this theory, suggesting 

there are other factors. This includes (i) the difference observed for the SERS spectrum of 

a molecule and its normal Raman spectrum, (ii) the inconsistent EF obtained when 

different molecules have been studied such as non-resonant and resonant molecules under 

the same experimental conditions, and finally (iii) the discrimination in the enhancement 

of the different bands in a SERS spectrum. Such observations can be better addressed by 

the chemical mechanism as explained in the following section.
111,112

 

2.2.4.1.2 Chemical Mechanism 

The presence of the chemical mechanism was evidenced when enhancement of the 

Raman scattering was observed even without using metallic plasmonic nanostructures in 

the plasmonic region of interest
 
or using flat metal surfaces.

113,114
 Under the described 

conditions, no EM enhancement is expected to be observed. Therefore, a different 

mechanism has to be involved for the enhancement of the Raman scattering. These 

mechanisms typically induce 1-4 orders of magnitude of enhancement and are 

categorized under chemical mechanisms. Three different sub-mechanisms involved in 

chemical mechanism are depicted in Figure 2.10 A-C along with EM mechanism for the 

purpose of comparison.
115

 
 

 

Studies on non-EM enhancement mechanisms suggested that the resonance between the 

metal nanostructure and the incident laser induces a charge transfer between the 

metallic nanostructure and the adsorbed molecules.
97,116 

For charge transfer to happen, 

the metal and the probe molecule must be in close enough proximity for the 

corresponding wave functions to overlap. However, the exact mechanism at work for 

charge transfer is not fully understood.  
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Figure 2.10 Illustration of different enhancement mechanism (a)-(c) demonstrate 

three types of chemical mechanism while (d) shows electromagnetic mechanism.
120

 

 

A mechanism was proposed by Pettinger in 1986.
117

 He suggested that the plasmon 

resonances in the metal can be excited by radiation through which an electron-hole pair 

is generated. As a result, the energy of resonant metal is transferred to the molecule to 

promote it to an excited state. The energy will then be sent back inelastically by the 

molecule to the metal after its relaxation to the ground state. At this stage, the excited 

SP emits a photon. The HOMO and LUMO energy states of the metal and the adsorbent 

should be taken into account to explain the charge transfer. Initially, the energy level 

between the HOMO and LUMO of the probe molecule is too high to be reached upon 

illumination by laser. However, the HOMO and LUMO of the metal are at the same 

Fermi energy level. It is proposed in the literature that a sample-metal complex is 

formed when the sample is in direct contact with the metal surface.
118,119 

This formation 

expedites a charge transfer from the HOMO of the molecule to the LUMO of metal and 
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from there to the LUMO in the molecule eventually as depicted in Figure 2.10A. By 

this means, the Raman scattering cross-section is enhanced through decreasing the 

energy gaps between the bands and enabling an electronic transition of the molecule. 

Resonance Raman is another source for chemical enhancement in addition to the charge 

transfer effect.
115,121 

Resonance Raman is very similar to the molecular resonance 

mechanism. The only difference is that the presence of a metal tip induces the resonance 

by altering the excitation energy of the molecule and consequently through the 

nanoantennas of the nanostructure altering the resonance conditions. Therefore, 

although the resonance Raman is not a surface effect, it should be considered due to the 

impact of the metallic nanoantennas on resonance Raman enhancement.
100 

Resonance 

phenomenon could generate 3-6 orders of magnitude of the total enhancement, when the 

incident Raman beam matches or is close to an allowed electronic transition of the studied 

molecules.
100 

Herein, the presence of metallic nanostructure alters the excitation energies of 

the molecule, leading to the formation of surface-enhanced resonance Raman spectroscopy 

(SERRS).
100,115,118

 
    

Non-resonant chemical mechanism is the third source for chemical enhancement 

providing 2 orders of magnitude
 
or less contribution to total enhancement. Non-

resonant chemical mechanism is due to interaction between the ground state of the probe 

molecules and the metal upon placing the sample in the vicinity of a noble metal. 

Quantum mechanical calculations suggest that this phenomenon is greatly dependent to 

size, charge, binding site and the molecule’s orientation with respect to the metal cluster 

and also the separation between the two.
115,122,123 

Depending on the orientation of the 

molecule with respect to the nanoantennas on the nanostructure, certain Raman modes 

could or could not be excited while charge transfer or resonance conditions are absent. 
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The charge transfer effect is typically much more pronounced in SERS measurements as 

compared to tip-enhanced Raman spectroscopy (TERS), another Raman-based advanced 

optical and spectroscopic technique with nanoscale spatial resolution.
124 

For instance, the 

charge transfer has only been observed in previously published TERS study of adenine 

nucleobases and has not been detected for other nucleobases such as cytosine and 

thymine.
125-128

 Chemical enhancement is excluded from the work presented in this thesis 

because of two main reasons: (i) First, chemical enhancement is very dependent on the 

sample and (ii) the molecules used in this thesis are all non-resonant molecules. It is 

worthwhile to mention that the chemical and EM mechanisms can both be present to 

generate further enhancement of the Raman scattering. Both effects are typically used in 

single molecule Raman spectroscopy. Molecules such as dyes (Rhodamine, malachite 

green, methylene blue) are often used to further increase the Raman signal under 

resonance conditions. The contribution of each mechanism varies depending on the 

electronic transitions in the molecular systems of interest for a selected irradiation 

wavelength..
100

 

2.3 Summary 

The underlying principles of micropatterning and SERS were reviewed in this Chapter. 

First, distinct major micropatterning methods including photolithography, microcontact 

printing, and microfluidic patterning along with other widely-used patterning approaches of 

stencil, inject and plasma-assisted patterning were discussed thoroughly. Second, Raman 

scattering was introduced as the inelastic scattering of light caused by laser induced 

molecular vibrations in a medium. The low cross-section of this inelastic scattering 

would be improved within plasmonic fields generated at the surface of a noble metal 

upon illumination by a proper laser wavelength. The phenomenon includes the basis for 

surface-enhanced Raman spectroscopy providing a highly sensitive analytical method 
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to detect very low concentrations of a wide range of samples. It was further discussed 

that the dielectric function of noble metals and also the dimension and size of the 

metallic nanostructures play substantial roles in excitation of their plasmon resonances. 

The enhancement of the Raman scattering in SERS was analyzed on the basis of two 

mechanisms termed as the EM enhancement and chemical enhancement. The former is 

believed to play a dominant role in the accessible enhancement in SERS while the latter 

is more pronounced in surface-enhanced method where the molecules come to direct 

contact with the metal surface. Keys to obtaining ultra-sensitive SERS measurements are 

the development of novel plasmonic platforms. The principles of two major techniques used 

in this thesis to fabricate such developed plasmonic platforms along with SERS 

experimental setup has been discussed in detail in the following chapter.  
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Chapter 3  

 

3 Fabrication techniques of plasmonic platforms 

Surface-enhanced Raman spectroscopy (SERS) is a promising technique for chemical 

analysis and surface characterization offering a highly sensitive tool down to single 

molecule. Nevertheless, several challenges limit the widespread application of this 

technique. Fabrication of efficient and uniform SERS platforms is indeed one of the most 

critical challenges.
1
 This is limited by the material as well as the size of the nanoscale 

features that are responsible for generating localized enhanced nanoscale regions of so-

called hot spots. An optimized fabrication method is thus the key to prepare efficient and 

reproducible plasmonic platforms.  Moreover, the plasmonic optical properties of the 

platform are key factors to optimize the enhancement in SERS measurements. The 

efficient excitation of the plasmonic resonances occurs when the incident light has a 

polarized component along the nanoantennas direction. This Chapter summarizes the 

optimal parameters to achieve high sensitive SERS measurements using 2D and 3D 

plasmonic platforms and also the experimental setup to perform sensitive SERS 

measurements. 

3.1 Nanosphere lithography (NSL) 

Design, fabrication and characterization of versatile nanostructured surfaces using 

different techniques, such as immobilized colloid deposition,
2 

nanoimprint lithography,
3
 

chemical etching,
4
 on-wire lithography,

5 
and many others

6-10
 are reported in the literature. 

Of those techniques, lithography provides one of the simplest methods to control the 

geometry, size and spacing of the nanostructures.
7
 NSL,

7,11,12 
is a technique of choice to 
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simplify and reduce the costs of production of these substrates and is scalable for the 

production of large surfaces. 

 

 

Figure 3.1 Schematic illustration of the nanosphere lithography with interface 

method. A) a monolayer of polystyrene microspheres are spread on water-air 

interface and the monolayer is transferred onto the surface of a clean microscope 

coverslip; B) a uniform layer of a metal of choice is deposited by electron-beam 

evaporation and the microspheres are removed by sonication in ethanol revealing 

the final plasmonic platform; C) side view of the same process in B. 
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NSL, a derivative of natural lithography
13

 uses colloidal polystyrene or silica nanospheres 

(or microspheres) to create a hexagonal closed packed array. The gap between the 

spheres enables researchers to design different structures. Simple structures such as 

nanotriangles and nanopyramids can be produced simply by varying the amount of 

material that is deposited onto the surface.
12

 By etching the spheres prior to deposition, it 

is possible to create nanohole and nanobowl arrays. More details associated with design 

of producing nanotriangles and tetrahedral nanopyramids are presented in Chapters 5 and 

6, respectively.  

 

A schematic for the principle of NSL is illustrated in Figure 3.1. In order to perform 

NSL, microscope coverslips are sonicated in acetone for 5 min followed by cleaning in 

Nochromix solution in concentrated sulphuric acid for 15 min. Subsequently, the slides 

are rinsed in Milli-Q ultrapure water (18.2 MΩ·cm) several times. These are sonicated for 

1 h in mixture of ammonium hydroxide/hydrogen peroxide/ultrapure water in ratio of 

1:1:5.  Afterward, the glass slides are rinsed and stored in MilliQ water. Polystyrene 

nanosphere suspension was equilibrated to room temperature before use. The size of 

polystyrene nanospheres varies in different experiments. The size that was used in this 

thesis is 1000 nm polystyrene spheres as shown in Chapter 5 and 6, however, the protocol 

can be used for other sizes including 650 and 438 nm polystyrene spheres. 20 μL aliquot 

of polystyrene suspension was mixed with 20 μL of ethanol (100%). 20 μL of the 

prepared solution was deposited atop a dried coverslip. This was immediately introduced 

in the air-water interface of a 6 cm Petri dish filled with ultrapure water. The coverslip 

floated on the air-water interface and the solution spread out from the coverslip to the air-

water interface. After the dispersion of the solution, the coverslip sank to the bottom of 

the Petri dish. A drop of 2% (w/v) sodium dodecyl sulfate solution in water was added to 

further group the nanospheres into an ordered monolayer. The nanosphere solution was 
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finally picked up using a wet coverslip and was allowed to dry under a Petri dish 

undisturbed. After the samples dried, 3 nm of Ti and 30 nm of Au were deposited using 

electron beam evaporation (Hoser, Ottawa, Canada). The polystyrene particles were 

removed by sonicating the sample in ethanol for about a minute. The sample was then 

dried with nitrogen. By adding a dielectric layer such as SiO2, these platforms can also be 

sued for surface-enhanced fluorescence SEF, since it requires this layer to prevent the 

quenching of a chosen fluorophore in the vicinity of the metal surface.
11,12

 NSL can also 

be performed multiple times with different sized spheres on the same substrate in order to 

create even more different patterns.  

 

Figure 3.2 Representative SEM images of nanotriangles fabricated by different NSL 

techniques, including A-C) drop casting. D-F) spin casting. G-I) interface method. 
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Table 3.1 Comparing three principle techniques for NSL. 

NSL Techniques Drop Casting Spin Casting Interface 

Advantages 

1. Easiest method 

 

2. Relatively 

uniform 

macroscopic regions 

of monolayers of 

particles 

1. Fastest method 

 

2. Quick solvent 

evaporation 

 

3. Greater coverage 

than drop casting 

over the substrate 

1. Greatest coverage 

of compact regions 

of particles over the 

entire substrate. 

 

2. Greatest 

adaptability to 

micropatterning 

techniques 

 

3. Best use of 

particles 

Limitations 

1. Small coverage 

on the entire 

substrate 

 

2. Requires solvent 

to evaporate over a 

prolonged period 

 

3. Large regions of 

multilayers are 

formed 

1. Produces uniform 

defects of metal 

islands within the 

compact regions of 

particles 

 

2. Negative effect of 

surfactant on final 

structures 

 

3. Requires specific 

equipment 

1. Requires solvent 

to evaporate 

overnight 

 

2. Requires Skill 

 

3. Limited to the 

size of particles 
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There are three principle techniques that can and have been used to create substrates 

using NSL (Figure 3.2). Of the three, drop casting is by far the easiest. In this technique, 

an aliquot of a solution containing the polystyrene nanospheres is placed onto the center 

of the cover slip. As the solvent evaporates, compact and organized layers form on the 

surface, as shown in Figure 3.2. Potentially, the greatest drawback of drop casting is that 

it only covers a small portion of the entire substrate as shown in Figure 3.2 A. However, 

drop casting does provide macroscopic regions of relative uniformity which can be 

observed by visual inspection (Figure 3.2 B and D). In SERS, experiments are conducted 

majorly using a confocal microscope requiring small structures area (i.e. 100 μm
2
), whilst 

in SEIRA, a macroscopic measurement is usually performed, thereby requiring a larger 

homogeneous structured surface of typically 25 mm
2
. As such, the ability to select a 

region of uniformity by visual inspection is a necessity. 

 

The next simplest technique requires the use of a spin coater. Here, the particles are 

dispersed from the center of the cover slip outwards due to the spinning of the cover slip. 

Unlike drop casting which requires the solvent to evaporate over a prolonged period, the 

solvent evaporates quicker. Spin coating may not create the macroscopically large areas 

as drop casting does, but it does provide considerably greater coverage than drop casting 

as shown in Figure 3.2 D. Based on the time it takes for each step to occur, it is possible 

to go from unclean cover slips to substrates that are ready to be functionalized, in less 

than 8 hours (Figure 3.2 E and F).  
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Figure 3.3 SEM images of distinct plasmonic nanostructures obtained on the NSL 

substrates based on the presence of different layers of the sacrificial template of 

nanospheres. 
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The more challenging technique is the air-water interface method. In this method, the 

particles must be grabbed from the surface of the water by a clean hydrophilic cover slip. 

This method takes considerably more time than the others. The benefit though is that it 

offers the greatest potential for coverage on a cover slip (Figure 3.2 G-I) Other than 

time, this technique is limited to particles that are at least 0.4 µm in diameter. Below this 

diameter, it is very difficult if not impossible to see any floating structure in which to 

grab with a clean cover slip. Brief advantages and limitations of these three methods are 

shown in Table 3.1. In addition to the limitations mentioned in Table 3.1, the possibility 

of producing bilayer and multilayer of particles over the substrates using drop casting and 

spin casting techniques is significantly higher than air-water interface method as shown 

in Figure 3.3. The presence of bilayer leads to producing nanodots after the metal 

deposition and removing the particles. In the meantime, the creation of multilayers results 

in producing empty regions after removing particles. This effect can create microscopic 

regions of defects through homogenous regions of nanotriangles or nanodots.      

3.2 Electron-beam lithography (EBL) 

In contrast of NSL, EBL allows full control over the design of different features with a 

high reproducibility and with excellent resolution and homogeneity.
1 

EBL can be used to 

create patterns that go well beyond that of NSL in terms of complexity, reproducibility 

and homogeneity. Complex shapes and patterns, such as nanosnowflakes, and 

nanoflowers, can be readily fabricated. These types of structures allow for control over 

the locations of the “hot spots” on the surface of the substrate as well as on the extinction 

wavelength of the structured platform. Of these two methods, both have their strengths 

and weaknesses. In the case of NSL, it is the limited types of structures that can be 

fabricated, whereas for EBL, the limitation lies in the inability to effectively and 

efficiently produce the structure over the entire surface of the substrate at a reasonable 

cost. 
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EBL requires first a substrate coated with an electron beam photosensitive polymer, 

known as a photoresist. Using a scanning electron microscope equipped with a 

lithographic system, a design can be written on the surface by exposing the photoresist 

with the electron beam scans the surface according to 2D geometric design. Then, in the case of a 

positive photoresist, the coated sample has to be developed to remove the exposed polymer 

revealing the non-exposed photoresist that shows the desired patterns. The next step involves 

metal deposition followed by a lift-off procedure to remove the residual polymer. The 

final sample shows metallic structures that follow exactly the desired pattern with a 10-20 

nm resolution. Some patterns made in our group using this technique are shown in Figure 

3.4, where it can be appreciated that EBL offers a high control of the size, shape and 

spacing of the features.
6
 Using EBL, it is also possible to fabricate 3D plasmonic 

nanostructures such as 3D nanocavities consisting of arrays of nanoholes and co-

registered nanocones that are shown in detail in Chapter 7. 

 

Figure 3.4 Scanning electron micrographs of 2D nanostructures written using 

EBL.
14
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In the present thesis, EBL was used to develop a 3D nanostructure for ultra-sensitive 

detections. A schematic representation of the fabrication process of these structures has 

been shown in Figure 3.5.  

 

Figure 3.5 Schematic illustration of fabrication process for 3D plasmonic cavity 

nanosensors 

Complete details of the fabrication procedure has been discussed in chapter 7 

representing an ultra-sensitive detection of 4-nitrothiophenol (4-NTP) down to 100 aM 

on these plasmonic structures.
15

 Briefly, a thin layer of Ti has been deposited on the 

Pyrex substrate using electron-beam physical evaporation to produce a conductive layer 

for further EBL writing process. After spin-coating of a photoresist on the substrate, a 

pattern of choice (nanoholes array) has been written on the substrate using EBL 

instrument. By developing the photoresist, an array of nanopillars is revealed and is used 

as a mask for the fabrication of nanoholes array. Subsequently, a thin layer of Ti is 

deposited on the substrate as an adhesion layer prior to Au deposition. After the metal 
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deposition, the nanopillars are lifted-off to reveal the nanoholes arrays on the substrate. In 

the next step, a Ti etchant is used to etch away both Ti and Pyrex to create a nanocavity 

beneath the nanoholes array. Subsequent to that, another layer of Au is deposited to 

produce the co-registered truncated nanocones array under the nanoholes array.     

3.3 Raman setup for SERS measurements 

 

Figure 3.6 Principles of the SERS setup used in this thesis. The linearly polarized 

laser gets focused onto the sample using a microscope objective (typically ×100, 0.9 

N.A.). The backscattered light from the sample gets collected using the same 

microscope objective, passes through the notch filter that rejects the incident 

wavelength and then enters the spectrometer. Prior to entering the spectrometer, a 

confocal pinhole selects the back-scattered light from a given focal plane.  A 

diffraction grating disperses the light spatially, separating the distinct wavelengths. 

The dispersed light is then detected by a CCD detector prior to signal acquisition 

and treatment. 
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In the present thesis, the SERS setup is based on a commercial Raman spectrometer 

(600 gr/mm grating, HR LabRam, Horiba-Jobin-Yvon, Kyoto, Japan, focal length of 

800 mm) connected to an inverted optical microscope (IX71, Olympus, Tokyo, Japan) 

and interfaced with a 5 axis atomic force microscope system (AFM, NanoWizard II 

Bioscience, JPK Instruments Inc., Berlin, Germany) to perform measurements in the 

bottom illumination configuration and back-scattering collection geometry as shown in 

Figure 3.6. The setup is equipped with three different excitation sources including 532, 

632.8, and 785 nm. The excitation source was selected based upon the extinction 

wavelengths of the SERS substrates and also the probe molecules. The acquisition time 

used for each experiment was also dependent on obtained signal/noise ratio for the 

probe molecule. 

3.4 Summary 

There is a vast variety of techniques of generating plasmonic nanostructures for SERS. 

Of those, lithography includes the two major techniques namely NSL and EBL. These 

techniques provide simple methods to control the geometry, size and spacing of the 

nanostructures to generate strong LSPR leading to high SERS enhancements.  However, 

there are certain limitations for both techniques as discussed in this chapter. In order to 

provide a simple, high-throughput and low-cost method, NSL is the best choice. 

However, the capability of EBL to create versatile nanostructures in particular for 3D 

structures is beneficial compared to limited nanostructures that can be provided by NSL. 

Depending on the application, both techniques provide powerful plasmonic structures 

that can be used for ultra-sensitive detections of molecules and biomolecules leading to a 

broad interest in different disciplines including life, material, and environmental sciences.  
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Chapter 4  

4 Directing GPCR-transfected cells and neuronal 
projections with nano-scale resolution1 

Surface modification technology has made significant advances in recent years towards 

the miniaturization and organization of traditional cell culture systems. However, the 

capability of directing transfected cells and neuronal connections to probe small 

structures such as spines is still under development.  This chapter presents the capability 

of cell micropatterning technology not only to direct conventional cell lines, but also 

transfected cells by different receptors and also small structures such as neuronal 

connections called spines. Firstly, interactions of different micropatterned substrates with 

HEK 293, CF10 cell lines, and primary neuronal cultures are evaluated. Using 

conventional and confocal fluorescence microscopies, several morphological and 

behavioral aspects of all three cell types are investigated. The immortalized cell lines 

were able to attach to the substrate and interact with neighboring cells. Similarly, cortical 

neurons formed connections guided by the micropatterns. Transfection of HEK 293 or 

CF10 cell lines with specific members of the G protein-coupled receptor (GPCR) family 

did not alter the behavior of these cells in the micropatterns. Secondly, neuronal 

projections were efficiently isolated by the patterns, simplifying the localization of spines 

with nano-scale resolution probed by atomic force microscopy. This presents a valuable 

approach to isolate cells or to constrain important cell structures to grow along a desired 

pattern, thus facilitating advanced biological studies. 

                                                 

1
 A version of this chapter has been published in [Biomaterials, (2013), 34, 10065.]. Reproduced with 

permission of the Elsevier publishing group. 

2
 A version of this chapter has been submitted  
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4.1 Introduction 

Cell micro/nanopatterning has become a widely used approach for many different 

applications such as fundamental biological studies, cell-based biosensors, and tissue 

engineering. 
1-8

 With the ability to precisely control the size, shape, and spatial 

arrangement of the cell adhesive areas, basic cell functions including adhesion, 

proliferation, migration, motility, and differentiation can be studied. 
9-20

 Cells plated on 

adhesive areas typically adopt the size and shape of the pattern, thus allowing the 

manipulation of cell shape, extension, and spreading. 
21-25

 In addition, processes such as 

cell-cell and cell-substrate interactions can be studied. 
26-28

 Currently, most of these 

patterning technologies are limited to the type of substrate suitable, and many are not 

compatible with inverted microscopes due to a lack of transparency. This is a significant 

disadvantage, as the visualization and analysis of living cells using techniques such as 

optical or fluorescence microscopies, typically require transparent substrates.
29

 Similarly, 

when investigating cell interactions using spectroscopic techniques, the adhesion 

promoting molecules or biomolecules present would interfere in the analysis of the cells. 

In addition, constraining cells to grow flat over a surface offers better quality of imaging 

using optical microscopy, in particular when complex ensemble of cells such as neural 

networks are studied.  

Modifying the topography of a surface is a non-invasive and non-biological approach 

towards regulating cell function and it can be effective as a cell-stimulating cue, as cells 

in vivo interact with textured and rough surfaces.
30

 Topographical features have been 

studied at the micro- and nano-scale. However, investigating cell response to topography 

alone is complicated, because the wettability of the surface is variable with topographical 

changes.
31

 Despite this difficulty, there are some results that suggest an association of cell 

response to feature pattern.
32

 For instance, Fu et al. reported that smooth glass surfaces 
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support cell adhesion, proliferation, and long-term self-renewal of human embryonic 

stem cells (hESCs), while rough glass surfaces tended to induce a spontaneous 

differentiation.
15

 They also showed that NIH/3T3 fibroblasts are intrinsically sensitive to 

nano-scale topological cues, as evidenced by reduced cell spread area, enhanced cell 

adhesion, proliferation, and migration on nanoscale-rough glass surfaces compared to 

smooth surfaces.
11

 Furthermore, it has been shown that micropatterns with different 

widths and divergence angles passively direct the locomotion and the migration of 

NIH/3T3 fibroblasts cells.
21

 However, generally speaking, the cellular response to 

patterns is highly dependent on the specific pattern and also on the type of the cell. For 

instance, other studies have shown that Madin-Darby canine kidney (MDCK) epithelial 

cells show approximately the same behavior and growth on various micropatterned 

features.
26

  

One important challenge in cell biology is related to the ability of isolating cells and 

small structures, such as spines, in order to study protein localization and interaction in 

those sites. For example, more understanding about neuronal communication would be 

acquired in a system where the cell projections could be efficiently isolated and tracked. 

Furthermore, the isolation of spines, important structures involved in synaptic 

transmission,
33

 would be very helpful to further elucidate their role in pathological 

conditions such as neurodegenerative diseases. Immortalized cell lines are other 

important models used in cell biology. These cells are extensively used in biological 

studies due to their availability, low maintenance and cost, compared to primary cultures. 

Overexpression of G protein-coupled receptors (GPCRs) has brought solid understanding 

about function and regulation of these receptors.
34

 GPCRs, constitute by far the largest 

receptor family in mammals and are involved in the regulation of virtually all cellular and 

physiological functions in the body.
35,36

 Owing to their ability to bind to ligands with a 

high specificity and affinity, GPCRs are preferentially targeted for the development of 
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new therapeutics and account for about 40% of all modern medicinal drugs.
37

 Although 

studies using transfected cells in micropatterned substrates are rare, evaluating the 

capability of these substrates to guide the GPCR-transfected cells is of great importance.   

We previously reported plasma-deposited fluorocarbon patterned substrates as a 

candidate to pattern single and connected cells.
16,17

 In the present work, in addition to the 

newly optimized fabrication process, we demonstrate the capability of these substrates for 

controlled growth of cells transfected with different GPCRs. Amongst the receptors used 

are two members of group 1 metabotropic glutamate receptors (mGluRs), mGluR1 and 5, 

as well as 5-hydroxytryptamine receptor (5-HT2A), and corticotropin releasing hormone 

receptor (CRHR1), also known as CRF1. The objectives of this study were to: i) direct 

the GPCR-transfected cells using patterned substrates to determine their cellular response 

to pattern shape and size compared to non-transfected cells, ii) show the capability of the 

patterned substrates to isolate the neuronal projections, and finally iii) unravel the spines 

localization of isolated neuronal projections with nano-scale resolution by the 

combination of cell micropatterning and atomic force microscopy.  

4.2 Materials and methods 

4.2.1 Materials  

Standard glass microscope coverslips (22 × 22 × 0.15 mm) and microscope slides (25 × 

75 × 1 mm) were purchased from VWR International and Fisher Scientific, respectively. 

The 35 mm plastic dishes with glass bottom of 0.16-0.19 mm of thickness were 

purchased from MatTek Corporation. NanostripTM (90% sulfuric acid, 5% 

peroxymonosulfuric acid, <1% hydrogen peroxide, and 5% water) was purchased from 

Cyantek Corporation. The materials used in the photolithography process, MicropositTM 

SC1805TM positive photoresist and MicropositTM MFTM 319 developer, were purchased 
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from Rohm & Haas Electronic Materials, and the NANO
TM

 Remover PG was purchased 

from MicroChem Corporation. Octafluorocyclobutane gas (C4F8) was purchased from 

BOC Edwards. The wafer mounting media CrystalbondTM 509 was purchased from 

Aremco Products, Inc., and finally, the isopropyl alcohol (IPA) and acetone were 

purchased from Sigma-Aldrich and used as received. 

4.2.2 Patterned substrate fabrication 

Microscope coverslips were cleaned in Nanostrip
 
for 5 min and rinsed thoroughly with 

de-ionized (DI) water prior to use. The fabrication process, as outlined in Figure 4.1, is a 

combination of three main steps: photolithography, plasma polymerization, followed by a 

lift-off process. The first step of the fabrication process includes patterning the glass 

using optical lithography, in order to create a patterned photoresist mask to protect 

regions of the glass substrate. For this purpose, positive photoresist was spin-coated onto 

the cleaned glass slide, with a thickness of approximately 500 nm, as measured by atomic 

force microscopy. For the smaller features in range of 5 µm or less, using a thinner layer 

of photoresist will lead to sharper pattern. The photoresist was then softbaked at 115 °C 

for 1 min to evaporate the solvent, followed by baking in an oven at 90 °C for 20 min. It 

was then exposed to ultra-violet light through a chrome mask that had the desired pattern 

designed on it. For this purpose, a Karl Suss MA6 contact mask aligner (Suss MicroTech) 

was used for 8 s at an intensity of 12 mW cm
-2

. The exposed photoresist was then 

removed by developing in Microposit MF-319 developer for 1 min. It was then washed 

with DI water and dried under nitrogen.  
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Figure 4.1 Schematic illustration of the applied method to prepare patterns with 

fluorocarbon (FC) polymer; Photolithography and plasma deposition of a thin FC 

film were used prior cell culture over the patterned surface. 

The photoresist mask left on the surface is a replication of the original optical mask. In 

the second step, the plasma deposition of the fluorocarbon polymer was carried out using 

a deep reaction ion etching instrument, and inductively coupled plasma (ICP) reactor, 
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(Alcatel 601E). The source power and substrate bias were set to 1,800 and 80 W, 

respectively. The feed gas supplied was C4F8, controlled at a flow of 150 sccm [standard 

cubic centimeters per minute] with a total process time of 10 s at a temperature of 20 °C. 

The coverslips were mounted onto silicon wafers for the plasma deposition and were 

subsequently removed prior to the lift-off process. Finally, the protective photoresist was 

removed by a lift-off process in a photoresist solvent (NANOTM
 Remover PG) for 10 min 

at 80 °C, followed by sonication in the solvent for 30 s. The sample was then rinsed 

thoroughly with iso-propyl alcohol (IPA) and dried under nitrogen. The final architecture 

of the substrate is a thin fluoropolymer film with regions wherein the glass substrate is 

revealed. The process for the preparation of the patterned surfaces is shown in Figure 

4.1. 

4.2.3 Cells cultures 

HEK 293, and CF10 cells were maintained in Eagle’s Minimal Essential Medium (MEM) 

and Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen), respectively. They were 

then supplemented with 2 mM glutamine (used just for CF10), 50 μg ml
-1

 gentamicin 

(Invitrogen), and 10% Fetal Bovine Serum (Invitrogen). The cultures were kept in an 

incubator at 37 °C, 5% CO2, 100% humidity, and were replicated every 3 days by 

trypsinization (0.25% trypsin-EDTA, Invitrogen). The cells were seeded onto the 

patterned substrates at a density of 8×10
5
 cells/dish and incubated for 48 or 72 h before 

fixation. Alternatively, the cells were transfected with different DNAs at the 

concentration of 3 μg per 100 mm plastic dish for mGluR1-Flag, mGluR5-Flag, CRF1, 

and 5-HT2A receptors and 1μg per 100
 
mm plastic dish for the other constructs used. The 

cells were transfected using the calcium phosphate method as described previously by 

Ferguson et al. 
38
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4.2.4 Neuronal cultures 

Cortical neuron cells (CD-1 strain mice, 14-15 day embryonic age) were also 

investigated. Primary cortical neurons were dissociated in NeurobasalTM media 

supplemented with 0.5 mM L-glutamine, 2% B27 and 0.8% N2 supplements, and 50 units 

mL
-1

 penicillin-streptomycin (Invitrogen). Cultures were then plated onto the patterned 

surfaces at a density of 1-1.5×10
6
 cells/dish. The cultures were incubated at 37 °C for 7-

14 days. The media was also changed every 2-3 days. Animal handling protocol was in 

accordance with Western University (The University of Western Ontario) Animal Care 

Committee.  

4.2.5 Immunofluorescence staining  

HEK and CF10 cells were fixed using a solution of 4% paraformaldehyde prepared in 

phosphate buffered saline (PBS, pH 7.4, Invitrogen). The cells were then permeabilized 

in 0.5% Triton-X (Triton
®
X100, Sigma-Aldrich) prepared in PBS for 5 min. Non-specific 

binding of proteins and antibodies was prevented by incubation with a blocking solution 

of 1% bovine serum albumin (BSA, Sigma-Aldrich) + 2.5% goat serum (Invitrogen) in 

PBS. The cells were incubated over night with different primary antibodies prepared in 

0.1% BSA + 0.1% Triton-X solution. The dilution used was: mouse anti-beta actin IgG1 

(1:100, Abcam
®
 Inc.), rabbit anti-Flag (1:100, Sigma-Aldrish). The next day, the cells 

were rinsed 3 times with PBS, and incubated for 1 hour with different secondary 

antibodies at the dilution of 1:1000 in the same solution as primary antibodies. The 

secondary antibodies used were goat anti-mouse - Alexa Fluor
®
 633, goat anti-rabbit 

Alexa Fluor
®
 Rhodamine and goat anti-mouse Alexa Fluor

®
 488. Alexa Fluor

®
 

Phalloidin 488/633 is also used for non-transfected CF10 and HEK cells.  Thereafter, the 

cells were stained for nucleus by using HOECHST (1:1000) in PBS for 10 min. The cells 

were rinsed again three times with PBS and the coverslips mounted to glass slides with 
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IMMU.MOUNT mounting media from Thermo Scientific
®
. Neuronal cells also stained 

with synaptopsin-rabbit (1:100 Molecular Probes) and PSD 95-mouse (1:100 Millipore 

MAB1596) following the same protocol as described above for the immortalized cell 

lines.   

4.2.6 Characterization 

4.2.6.1 Optical and widefield imaging 

Images of the patterned substrates and the fixed cells were carried out in the bright field 

mode using Zeiss Axioskop2 MAT microscope with a QImaging Retiga 1300 CCD 

digital camera. Widefield images are also obtained by Zeiss LSM 510 META 

Multiphoton Confocal Laser Scanning Microscope with an AxioCam HRm CCD camera, 

respectively. 

4.2.6.2 Atomic force microscopy (AFM) 

AFM images were collected with a Bioscope Catalyst (Bruker), operating in tapping 

mode. A silicon cantilever with a spring constant of 40 N m
-1

 and an oscillating 

frequency of 325 kHz (NSC-15, Micromasch) was used. 

4.2.6.3 Fluorescence microscopy  

Fluorescence imaging of the cell/neuron components was performed with Zeiss LSM 510 

META Multiphoton Confocal Laser Scanning Microscope.  
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4.3 Results and discussion 

4.3.1 Characterization of fluoropolymer patterned surface 

4.3.1.1 Optical imaging  

 

Figure 4.2 Optical images of the photoresist patterned substrates, taken in bright 

field. A-C) hexagonal grid-like pattern; D-H) isolated and connected reservoirs with 

different geometries. Scale bar in D-H represents 50 µm. 

The shape, size, and separation of the patterned features for the fabricated substrates were 

easily controlled due to the versatility and high resolution of the photolithography 

process. A hexagonal grid-like pattern with triangular shaped nodes (20 µm) and slender 

channels (100 µm long, 5 µm wide) connecting them (Figure 4.2 A-C) were designed to 

provide simple connections between cells and more specifically to create circuits of 

neuronal cells at synapses. In addition, patterned connected reservoirs with different 

geometries (Figure 4.2 D-H) were fabricated in order to study the effect of geometry on 

cell growth. Figure 4.2 shows the photoresist patterned substrates before fluoropolymer 
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deposition. The optical images of the final fluopolymer patterned substrates are shown in 

Figure 4.3. The lack of optical contrast is due to the very thin fluoropolymer thin film (~ 

25 nm), 

 

Figure 4.3 Bright field optical images of fluoropolymer patterned substrates with 

different geometries. A-C) hexagonal grid-like pattern; D-H) five different 

geometries of isolated and connected reservoirs; The scale bar in images D-H 

represents 50 µm. 

Figure 4.4 shows the unit cell of the utilized mask on the left side of image which 

includes five different geometries from isolated reservoirs (A) to connected reservoirs (B-

E) with different distances and numbers of connections. As shown in Figure 4.4, the 

length of channel between two green reservoirs is 70 µm, whereas the distances between 

two blue or two red reservoirs are 100 and 200 µm, respectively. The diameters of all 

reservoirs and the widths of the channels are 20 and 5 µm, respectively. These different 

geometries give one an opportunity to study single cells and also connected cells on the 
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same sample simultaneously under identical conditions. Furthermore, it helps to reveal 

cell-cell interactions with respect to the numbers and lengths of connections. 

 

Figure 4.4 Schematic demonstration of different geometries of connected reservoirs 

on patterned substrates. 

 

4.3.1.2 AFM 

 

Figure 4.5 AFM height images of A) a node of hexagonal grid-like pattern; B) 

channels of connected reservoirs C) a reservoir; D) a channel on hexagonal grid-like 

pattern; E) cross section of a channel showing the thickness (25 ± 5 nm) of 

fluoropolymer thin film deposited on the substrate; A and B are the 3D AFM 

images.              
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AFM imaging was used to evaluate the qualities of fabricated channels and the thickness 

of the fluoropolymer thin film. Figure 4.5 A-D clearly demonstrates the integrities of the 

different fluoropolymer patterned substrates. The thin film of fluoropolymer was 

measured to have a thickness of 25 ± 5 nm (Figure 4.5 E).  

 

Figure 4.6 AFM (A, and B) and wide field fluorescence (B, and D) of micropatterned 

CF10 cells; E) Overlay fluorescence and AFM image of patterned CF10 cells grown 

inside the channels. A-D) Transfected CF10 cells with CRF1; E) Non-transfected 

CF10 cells. B, and D) Green is for YFP and blue for HOECHST. E) Green is for 

Alexa Fluor
®
 488 Phalloidin, and blue for HOECHST. 

It is observed that some defects of the edges of channels did not affect the cell/neuron 

growth negatively (Figure 4.6). Thus, cells can grow easily through channels while they 

are repelled by fluoropolymer surface.
16

 Overall, the characterization of these new 

patterns demonstrates that the combination of photolithography and plasma deposition is 

a promising fabrication technique to prepare patterned surfaces possessing different 
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geometries. Combined AFM with fluorescence also gives one much detailed 

morphological information of the cell membrane (Figure 4.6). 

4.3.2 Non-transfected cell proliferation on patterned substrates  

 

Figure 4.7 Confocal fluorescence images of the growth of non-transfected HEK 293 

and CF10 cell lines on patterned substrates; A-F) Non-transfected CF10 cells grown 

on patterned reservoirs substrates; G-J) Non-transfected HEK 293 cells grown on 

hexagonal grid-like patterned substrates; K, and L) Non-transfected CF10 cells 

grown on hexagonal grid-like patterned substrates; Blue represents HOECHST 

nuclear staining in all images; Actin (488 nm) and Alexa Fluor 488 Phalloidin are 

stained in green for HEK 293 cells and CF10 cells, respectively to show cell body; 

All scale bars are 50 µm.    

Prior to studying the growth of more challenging cell lines on the patterned substrates, it 

was first of interest to assess the behavior of two common cell lines, human embryonic 

kidney (HEK) 293 and CF10 cells on the patterns. HEK 293 cells have been widely-used 

in cell biology research for many years and are a well-known and established cellular 

model.
39,40

 The widespread use of this cell line is due to its rapid growth rate, easy 

maintenance and readily transfectability by the various techniques, including calcium 
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phosphate method.
38

 CF10 cells are a prion protein (PrP
C
-null) neural cell line derived 

from PrP
0/0 

mice.
41 

Due to the difficulty of cultivating primary cultures, this cell line was 

used in this work as a model of neuronal cells. The results obtained for CF10 cells on the 

patterned substrates were compared with the ones for HEK 293 cells.  

Figure 4.7 shows that both cell lines were able to attach to the substrates, forming 

different arrays according to the geometry of the pattern. The cells were able to survive 

and form connections in all the geometries tested. In some locations of the patterned 

substrates, it was observed that a few cells extended across a fluoropolymer area to 

interact with cells placed within channels. During the plating of cells on the substrate, 

they were placed everywhere, even on the fluoropolymer surface. Most cells that were on 

the fluoropolymer surface could not adhere and survive due to the hydrophobicity of the 

fluoropolymer surface. Thus, they were easily washed away during the staining process. 

Despite this, a few cells that formed tight connections with the ones located in the 

channels remained in the fluoropolymer areas. 

In comparison with the HEK 293 cells, the CF10 cells grew and spread better on the 

patterns (Figure 4.7). As shown in Figure 4.7 K and L, they formed more hexagonal 

grid-like patterns on the substrates. This can likely be attributed to their inherent size and 

morphology, which more closely matches the relatively narrow width (5 µm) of the 

channels. Due their high growth rate, the number of CF10 cells plated had to be 

optimized to prevent the substrate from being overloaded with those cells. This was the 

key point for CF10 cells, as they grew readily and massively when they were plated on 

the micropatterned substrates or even on regular confocal dishes. These results suggest 

that these patterns can also be used for neural cells in order to study the neural 

communication. The control dishes represent the growth and transfections of cells on 
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regular confocal dishes (Figure 4.8). Glass bottom confocal dishes from MatTek were 

used for control samples. 

 

Figure 4.8 Confocal Fluorescence images of control samples on confocal dishes; A) 

Non-transfected HEK 293 cells B) Non-transfected CF10 cells; C-F) HEK 293 cells 

transfected with mGluR1, mGluR5, CRF1, and 5HT2A, respectively; number of 

cells in all dishes: 8 × 10
5
 cells/dish; Alexa Fluor

®
 488 Phalloidin, Flag, and YFP are 

stained in green showing cells bodies and receptors; HOECHST is used for nuclear 

staining in blue; All scale bars represent 50 µm.      

4.3.3 Micropatterned transfected cells 

Glutamate is the major excitatory neurotransmitter in the brain and is essential for 

integrative brain functions and neuronal cell development. Glutamate exerts its actions by 

interacting with two major types of receptors: ionotropic and metabotropic. mGluRs are a 

type of glutamate receptor that is active through an indirect metabotropic process. Unlike 

ionotropic receptors, mGluRs are not ion channels. They are indirectly linked with ion-
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channels on the plasma membrane of the cell through signal transduction mechanisms, 

often G proteins. They are members of the group C family of GPCRs. Like all glutamate 

receptors, mGluRs bind glutamate, an amino acid that functions as an excitatory 

neurotransmitter. Group I mGluRs (mGluR 1 and 5) are implicated in a number of brain 

disorders and a clearer understanding of mGluR signalling in different neurological 

pathologies will be important for understanding the underlying molecular aspects of the 

disease as well as to develop pharmacotherapies.  mGluRs play a key role in studying 

different types of neurological disorders such as Epilepsy’s, Huntington’s, Alzheimer’s, 

Parkinson’s diseases or even in drug addiction. These receptors have also been implicated 

in cell proliferation and cancer. It has been shown that mGluR5 regulates proliferation, 

differentiation and guidance of migration of neuronal progenitor cells. 
42,43

In addition, 

altered mGluR1 signaling has been associated with specific types of lung cancer.
44

  

Serotonin (5HTR) and CRF (CRFR) receptors are other members of the GPCR family 

used in this work. 5HT2 receptors are involved in diverse mental illnesses such as 

schizophrenia, depression, anxiety, obsessive-compulsive disorder and others.
45,46

 CRFR 

has an important role in stress-mediated responses. Interaction between 5HT2R and 

CRF1R has been shown to regulate anxiety behavior.
47

 Both receptors are important 

targets for the development of drugs treating anxiety and depression. Due to the 

importance of these GPCRs as therapeutic targets, cells transfected with mGluR1, 

mGluR5, CRF1, and 5HT2A were selected to study on the micropatterns. We evaluated if 

after transfection the cells would still survive when plated in the micropatterns, and if the 

expression of different GPCRs would influence their behavior on those patterns. Based 

on the compatibility of CF10 cells with the patterns as described above, they were 

selected as the transfected cell type.  
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We compared the cell proliferation/survival of normal cells to those that were transfected 

with the DNAs for the expression of the different GPCRs. Figure 4.9 shows images of 

GPCR-transfected CF10 cells patterned in five different geometries. The CF10 cells 

transfected with the aforementioned receptors grew on the substrates readily and were 

directed with a good agreement to the patterned features. As transfection is a stressful 

process for the cells, they are more susceptible to death than non-transfected cells. It can 

be clearly seen in Figure 4.9 that fewer transfected cells attached to the substrates 

compared with the non-transfected cells (Figure 4.7), even though the same number of 

cells were plated in both cases. In addition, the morphologies of the transfected cells did 

not look as healthy.  
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Figure 4.9 Widefield fluorescence images of micropatterned CF10 cells transfected 

with: row A) mGluR1-Flag; B) mGluR5-Flag; C) CRF1-YFP; D) 5HT2A-YFP 

receptors on five different geometries of reservoirs; Blue represents HOECHST 

nuclear staining, receptors tagged with Flag were labeled with Alexa Fluor 488 

(green, 488nm); YFP label is also shown as green  (514 nm); All the scale bars 

represent 20 µm. 
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Figure 4.10 Confocal (A-H) and widefield (I-N) fluorescence images of HEK 293 

cells transfected with A-D) mGluR1-Flag; E-H) mGluR5-Flag; I-K) CRF-YFP; L-N) 

5HT-YFP; Blue represents HOECHST nuclear stain, green is for Flag (488 nm), 

and YFP (514 nm); red is for actin 633 nm; All scale bars are 50 µm. 

The proliferation rates were also smaller in the transfected cells, independent of the 

receptor used. Thus, the most significant factor was the transfection itself and not the 
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expression of the specific receptor. Despite these differences compared to non-transfected 

cells, all of transfected cells were able to form the five geometries on the substrates. As 

described above, although the HEK cells did not conform to the patterns as readily as the 

CF10 cells, they exhibit higher transfection efficiency than the CF10 cells.  

Therefore, HEK 293 cells transfected with the same receptors as above were also studied 

on the micropatterned substrates (Figure 4.10). Similar to the results obtained for CF10 

cells, the transfection process in HEK 293 cells also reduced their survival on the 

substrates. In addition, there was again no significant difference in terms of how the cells 

transfected with the different receptors interacted with the substrates. Again, the results 

with the transfected cells suggested that these patterns were better platforms for neuronal 

cells. The results obtained here for the immortalized cell lines constitute the basis for 

advanced studies using transfected cells in micropatterned substrates. 

4.3.4 Neuronal circuit arrangement on patterned substrates  

Primary mice neuronal cells were cultured on the samples patterned with the hexagonal 

grid-like substrates and then fixed after 7-14 days in vitro (DIV). Figure 4.11 shows the 

fluorescence images of neurons arranged within the hexagonal grids. It was observed that 

in most cases, the cell bodies were located within the triangular nodes as desired, with the 

projections extending along the channels to create circuits with other neurons (Figure 

4.11). Furthermore, by increasing the incubation time from 7 to 14 days, the number of 

projections increased, as the circuitous patterns were completely filled with numerous 

projections, even to the point of overlapping significantly (Figure 4.11D). There were 

occasions where projections were observed to extend across a fluoropolymer area to 

interact with neurons at the other side (Figure 4.11C). During imaging acquisition, it was 

easy to observe that those bridging projections were loose and not physically attached to 

the fluoropolymer area. Thus, the projections were merely tethered at either end, and it is 
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believed that this is further indication that projections do not have adherence complexes 

along the entire length, only in certain locations. The ability to pattern neurons into 

networks may be very useful to study synapse transmission. 

 

Figure 4.11 Widefield (B, and D) and confocal (A, and C) fluorescence images of 

cortical neuron circuit arrangement; A) 7 DIV; B-D) 14 DIV; Synaptic markers: 

Synaptophysin (red) and PSD-95 (green) were used; Blue represents HOECHST 

nuclear staining; All scale bars are 50 µm. A-C) 1 × 10
6
 cells/dish; D) 1.5 × 10

6
 

cells/dish. 
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Neurons are particularly useful as sensing elements as the electrical activity can be 

monitored in response to chemical influences in the culture environment, and so the 

networks can be organized on the microelectrodes for optimal contact. Moreover, the 

ability to isolate neurons has always been a challenge for biologists, as they aggregate 

once cultured. Hence, these patterns provide the opportunity to study the communication 

between neurons in a well-controlled architecture.  

Finally, immunofluorescence staining was used to image synaptic markers. We could 

also visualize the cell body by using nuclear staining, which provided an indication of 

where they were located and the number of cells/channel. Both synaptic markers, 

synaptophysin and PSD-95, were visible as fluorescent puncta along the projections and 

around the cell bodies (Figure 4.11). These are synaptic sites and are indicative of 

neuronal communication. There is no preferential location for the synapses, as the 

projections all along the channels display the same behaviour. 

4.3.5 Spine localization in isolated neuronal projections 

Different micropatterning techniques have recently been developed for in vitro neural 

studies.
48-55

 However, it is still challenging to isolate the projections of connected 

neurons. In this study, we combined the cell micropatterning with atomic force 

microscopy to investigate the localization of spines in isolated projections of cortical 

neurons. Atomic force microscopy has the ideal spatial resolution to probe small features 

with sub nano-scale dimensions. It is especially useful for biological samples in which 

the small structures cannot be easily probed using conventional fluorescence 

microscopies. The isolated projections of neurons are clearly shown in Figure 4.12. By 

decreasing the number of cells, the probability of having single isolated neurons 

connected together through their projections is increased (Figure 4.12 A-C). Figure 4.12 

A and D show the 2D AFM images of isolated neuronal projections with 1 and 1.5 
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million cells/dish, respectively. However, even with higher number of cells, it was still 

possible to isolate the neuronal projections using these patterns as well as probing the 

localization of spines (Figure 4.12 D-G).  

 

Figure 4.12 AFM height images of isolated neuronal projections showing the spines 

localization A, D) 2D AFM images of isolated neuronal projections; B) AFM image 

of the selected area shown in A; C) 3D AFM image of the selected area shown in B; 

E, F) 3D AFM image of the selected area shown in D; G) 3D AFM image of selected 

area in E showing the spines with higher magnification; Arrows show the spine 

localizations of isolated neuronal projections. 
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4.4 Conclusions  

In the present work, we showed the capability of newly optimized fluoropolymer 

patterned substrates to direct neuronal projections and transfected cells with specific 

members of GPCRs. It is shown that transfection of two different immortalized cell lines 

with GPCRs did not alter the behaviour of cells in the micropatterns and their level of 

growth was affected just due to the cellular stress during transfection process. Aside from 

that, these patterns provide a well-organized condition to isolate neuronal projections. 

This provides the possibility of investigating the cellular and neuronal connections in 

well-controlled positions in high uniformity, thus providing a useful tool for in vitro 

cellular research. Finally, atomic force microscopy is employed to reveal the localization 

and morphology of spines with nano-scale resolution for well-isolated neuronal 

projections compared to conventional and confocal fluorescence microscopies. The 

combination of this method with fluorescence microscopy provides a promising tool for 

advanced studies using in vitro immortalized cell lines and neurons; specifically in works 

focusing at spines. This approach would also be ideal to study synapse events under 

physiological and pathological conditions.    
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Chapter 5  

5 Enabling controlled positioning of analytes and cells on 
a plasmonic platform for surface-enhanced Raman 
spectroscopy: where surface chemistry meets biology2 

The rise of molecular plasmonics and its application to ultrasensitive spectroscopic 

measurements has been enabled by the rational design and fabrication of a variety of 

metallic nanostructures. Advanced nano and microfabrication methods are key to the 

development of such structures, allowing one to tailor optical fields at the sub-

wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In 

this work, the control of both analyte and cell positioning over a plasmonic platform is 

enabled using nanofabrication methods involving patterning of fluorocarbon (FC) 

polymer (C4F8) thin films over a plasmonic platform fabricated by nanosphere 

lithography (NSL). This provides the possibility to probe biomolecules of interest in the 

vicinity of cells using plasmon-mediated surface-enhanced spectroscopies. In this 

context, we demonstrate the surface-enhanced biosensing of glycan expression in 

different cell lines by surface-enhanced Raman spectroscopy (SERS) on these plasmonic 

platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman 

reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse 

myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression 

is observed for cancer cells compared to other cell lines by confocal SERS mapping. This 

suggests the potential application of these versatile SERS platforms for differentiating 

cancerous from non-cancerous cells.  

                                                 

2
 A version of this chapter has been submitted  



www.manaraa.com

94 

 

 

 

 

 

5.1 Introduction  

 

Discovered almost four decades ago, surface-enhanced Raman spectroscopy (SERS)
1
 and 

subsequent techniques such as surface-enhanced fluorescence (SEF)
2
 and surface-

enhanced infrared spectroscopy (SEIRS)
3-5

 have developed into mature methods to give 

unprecedented levels of sensitivity. SERS in particular provides ultra-high sensitivity 

down to attomolar concentrations and even further to a single molecule level.
3,6-10

 More 

importantly, the use of these surface-enhanced techniques has enabled biosensing and 

biomolecular recognition with ultra-high sensitivity, opening a wealth of applications to 

probe intimate biological processes with minimized intrusion, better specificity and 

higher reproducibility.
10-14

 The interactions between biomolecules and their changes in 

conformation in response to stimuli are processes that can be probed at the monolayer 

level with lower light irradiance and shorter acquisition time, thereby reducing 

experimental invasion and physiological stress. 

 

Key to the success of high spatial resolution optical spectroscopy is advances in micro 

and nanofabrication techniques that allow one to rationally design and reproducibly 

fabricate plasmonic platforms with controlled opto-geometric parameters.
15-17

 The 

metallic platforms can be tailored, so that the localized surface plasmon resonance can be 

accurately tuned to a selected probe wavelength. In particular, highly reproducible 

plasmonic platforms with feature dimensions and inter-structure distances on the order of 

10 nm are achieved by electron beam lithography and focused ion beam milling.
18,19

 

Among nanofabrication techniques to produce plasmonic platforms, NSL is an 

inexpensive and high-throughput technique capable of generating well-organized 2D and 

3D periodic nanostructures.
2,20,21

 Using NSL, the shape of the plasmonic platform can be 
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feasibly tuned based on the application to produce different features such as nanoscale 

triangles, pyramids, rings, overlaps, gaps, rod chains, and holes.
21-24

  

 

To study monolayers at surfaces such platforms are ideal as the functionalization of the 

platform is homogeneous at the scale of the local measurement. In addition, SERS has 

been widely used for the detection of various biomolecules. For example, SERS 

platforms functionalized with aptamers have been successfully used for toxin and protein 

recognition.
25,26

 Antibody functionalization of SERS surfaces to detect biomarkers of 

endocrine disrupting compounds was also described.
27

 Furthermore, enzymatic processes 

such as histone demethylase activity have been probed using SERS assays.
28

 However, 

using such platforms, significant challenges are still encountered in the study of 

biological processes, such as intracellular sensing,
29

 chemical exchanges between cells or 

responses of cells to endogenous or exogenous stimuli.
30,31

 One significant challenge 

arises from the inherently random growth of cells over most surfaces.
32

 The positional 

control of cell growth over an array of plasmonic platforms would open possibilities for 

multiplexed parallel screening using SERS, SEF or other optical techniques involving a 

plasmon resonance that has been tuned to enhance a specific spectral region. Each cell 

position over a plasmonic platform would be defined by a set of spatial coordinates, 

allowing automated measurements over a large number of individual cells. Such an 

approach would in turn be the key to the acquisition of large data sets and thus 

statistically relevant information concerning biological processes. The control of cell 

density over the surface would provide the possibility to control and study cell-substrate 

and cell-cell interactions.
33,34

 Our group has previously introduced a new method for cell 

positioning using plasma deposition of fluoropolymer thin film.
32

 However, a plasmonic 

platform was not incorporated, so it was not possible to perform optical studies of 

analytes or cells mediated by surface-enhanced methods. 
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Herein, we introduce the development of the first platform that involves embedded 

plasmonic platforms organized in micro-scale patterns that direct cell adhesion and 

growth. This allows one to locate the analyte in defined microwell positions, depending 

on the feature pattern within the plasmonic sensing areas, to perform controlled plasmon-

mediated surface-enhanced measurements. NSL is used to fabricate the SERS platform, 

35,36
 then a photolithographic method with a plasma induced fluorocarbon (FC)-polymer 

thin film deposition is used to provide windows over specific areas on the plasmonic 

platform for cell growth. In the second step, we demonstrate that different cell lines such 

as immortalized cells and neurons can accurately be positioned and grown over a 

plasmonic platform of interest. The application of this device in biosensing is also 

demonstrated by mapping the glycan expression in cell lines including human embryonic 

kidney (HEK 293), C2C12 mouse myoblasts, and cervical cancer cells (HeLa).  

5.2 Experimental section  

5.2.1 Materials 

Standard glass microscope coverslips (22×22×0.15 mm) and microscope slides (25×75×1 

mm) were purchased from VWR International and Fisher Scientific, respectively. Plastic 

dishes (35 mm) with glass bottoms (thickness of 0.16-0.19 mm) were purchased from 

MatTek Corporation. Nanostrip
TM

 (90% sulfuric acid, 5% peroxymonosulfuric acid, <1% 

hydrogen peroxide, and 5% water) was purchased from Cyantek Corporation. The 

materials used in the photolithography process, Microposit
TM

 SC1805
TM

 positive 

photoresist and Microposit
TM

 MF-319 developer were purchased from Rohm & Haas 

Electronic Materials, and the NANO
TM

 Remover PG was purchased from MicroChem 

Corporation. Octafluorocyclobutane gas (C4F8) was purchased from BOC Edwards. The 

wafer mounting medium Crystalbond
TM 

509 was purchased from Aremco Products, Inc., 
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and finally, the isopropyl alcohol (IPA) and acetone were purchased from Sigma Aldrich 

and used as received. 1 µm polystyrene microspheres (10% w/w) were purchased from 

ThermoScientific Co (California, US). Sodium dodecyl sulfate, 4-nitrothiophenol (4-

NTP) (80% purity) and 4-mercaptophenylboronic acid (90% purity) were obtained from 

Sigma-Aldrich (Missouri, US). 

5.2.2 Fabrication process of FC-patterned platform 

Microscope coverslips were cleaned in Nanostrip
TM 

for 5 min and rinsed thoroughly with 

de-ionized (DI) water prior to use. The fabrication process, as outlined in Figure 5.1, was 

performed in four main steps. This includes NSL using an interface method, 

photolithography, plasma polymerization, followed by a lift-off process. NSL using the 

interface method was previously described in detail.
2,21,37

  

 

Patterning of the plasmonic platform using optical lithography employed a patterned 

photoresist mask to protect regions of the plasmonic substrate. A positive photoresist was 

spin-coated onto the cleaned plasmonic substrate, with a thickness of approximately 500 

nm, as measured by atomic force microscopy.
32

 For the smaller features in range of 5 µm 

or less, use of a thinner layer of photoresist led to sharper patterns. The photoresist was 

then soft-baked at 115 °C for 1 min to evaporate the solvent, followed by baking in an 

oven at 90 °C for 20 min. It was then exposed to ultra-violet light through a chrome mask 

that had the desired pattern designed on it. For this purpose, a Karl Suss MA6 contact 

mask aligner (Suss MicroTech) was used for 8 s at an intensity of 12 mW cm
-2

.  
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Figure 5.1 Schematic illustration of the fabrication process for the FC-patterned 

plasmonic platform. 

The exposed photoresist was then removed by developing in Microposit MF-319 

developer for 1 min. It was then washed with DI water and dried under nitrogen. The 
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photoresist mask left on the surface is a replication of the original optical mask. 

Subsequently, the plasma deposition of the fluorocarbon polymer was carried out using a 

deep reaction ion etching instrument, and inductively coupled plasma (ICP) reactor, 

(Alcatel 601E). The source power and substrate bias were set to 1,800 and 80 W, 

respectively. The feed gas supplied was C4F8, controlled at a flow of 150 sccm [standard 

cubic centimeters per minute] with a total process time of 20 s at a temperature of 20 °C. 

The photoresist-patterned plasmonic platform fabricated on coverslips were mounted 

onto silicon wafers for the plasma deposition and were subsequently removed prior to the 

lift-off process.  

 

Figure 5.2 AFM topography of A) a node and B) a channel of a hexagonal grid-like 

FC-patterned substrate on glass coverslip. C) Cross section of the indicated area in 

B determining the thickness of FC film of 60 ± 5 nm. 

 

A uniform layer of approximately 60 ± 5 nm (see Figure 5.2) of fluorocarbon polymer 

was deposited on the plasmonic platform.  Finally, the protective photoresist was 

removed by a lift-off process in a photoresist solvent (NANO
TM

 Remover PG) for 10 min 

at 80 °C, followed by sonication in the solvent for 30 s. The sample was then rinsed 

thoroughly with isopropyl alcohol and dried under nitrogen. The final architecture of the 



www.manaraa.com

100 

 

 

 

 

 

substrate is a thin fluoropolymer film (60 ± 5 nm) with regions wherein the 

nanotriangluar plasmonic platform is revealed.  

5.2.3 Functionalization of the platform  

A stock solution of 10
-3

 M 4-nitrothiophenol (4-NTP) in ethanol was prepared. This 

solution was then diluted to 10
-6

 M. From this solution, two 40 µL aliquots were drop 

casted onto the surface of a substrate that had been placed into a Petri dish. A clean 

coverslip was then gently placed onto the top of the substrate to sandwich the uniformly 

dispersed solution between the substrate and a coverslip. The Petri dish was covered with 

parafilm and left in the refrigerator to functionalize the surface for 24 hours. After 24 

hours, the coverslip was removed, and the substrate was dipped 5 times in 3 beakers of 

ethanol and then dried under nitrogen. 4-Mercaptophenylboronic acid (4-MPBA) was 

also dissolved in ethanol to form a 10 mM solution for functionalization of the platform 

as the Raman reporter for glycan study with the same procedure as 4-NTP.  

5.2.4 SERS setup 

The SERS measurements were performed using a Horiba Jobin-Yvon Labram HR Raman 

microspectrometer equipped with a 600 grooves/mm grating and a 632.8 nm excitation. 

The intensity was set to 1 mW at the sample. A microscope objective of 100X, 0.9 N.A. 

was used for all experiments. The pinhole of the spectrometer was opened to 200 µm. An 

acquisition time of 30 s with 5 accumulations was used for spectra shown in Figure 5.6. 

SERS maps ranged in size from as small as 5 µm × 5 µm to as large as 30 µm × 30 µm. A 

step-size of 1 µm was used for the SERS maps as this corresponds to the approximate 

size of the laser spot. For the construction of the SERS map shown in Figure 5.4, the 

acquisition time of each individual spectrum was set to 1 s. An acquisition time of 10 

second/spectrum is used for all the other SERS maps. SERS mapping was conducted on 

15 cells for each cell line for statistical purposes.  
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5.2.5 AFM 

AFM images were collected with a Bioscope Catalyst instrument (Bruker), operating in 

contact mode. A silicon cantilever with a spring constant of 40 N m
-1

 and an oscillating 

frequency of 325 kHz (NSC-15, Micromasch) was used. 

5.2.6 Scanning electron microscopy (SEM) 

SEM images were obtained using a LEO Zeiss 1530 (Zeiss, Oberkochen, Germany). 

Prior to imaging, substrates were coated with a 5 nm thick layer of osmium. 

5.2.7 Cultures of HEK, C2C12, and HeLa cells 

HEK 293, C2C12, and HeLa cells were maintained in Eagle’s Minimal Essential Medium 

(MEM, Invitrogen). They were then supplemented with 2 mM glutamine (used just for 

C2C12), 50 μg mL
-1

 gentamicin (Invitrogen), and 10% Fetal Bovine Serum (Invitrogen). 

The cultures were kept in an incubator at 37 °C, 5% CO2, 100% humidity, and were 

passaged every 3 days by trypsinization (0.25% trypsin-EDTA, Invitrogen). The cells 

were seeded onto the patterned substrates at a density of 8×10
5
 cells/dish and incubated 

for 48 h before fixation.  

5.2.8 Cultures of neuronal cells 

Cortical neuron cells (CD-1 strain mice, 14-15 day embryonic age) were also used. 

Primary cortical neurons were dissociated in Hank’s balanced salt solution (HBSS) and 

plated in Neurobasal
TM

 media supplemented with 0.5 mM L-glutamine, 2% B27 and 0.8% 

N2 supplements, and 50 units mL
-1

 penicillin-streptomycin (Invitrogen). Cultures were 

then plated onto the patterned surfaces at a density of 1×10
6
 cells/dish. The cultures were 

incubated at 37 °C for 14 days. The media was also changed every 2-3 days. Animal 

handling protocol was in accordance with Western University (The University of Western 

Ontario) Animal Care Committee. All of the cell lines and cortical neurons were fixed 
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using a solution of 4% paraformaldehyde and sucrose prepared in phosphate buffered 

saline (PBS, pH 7.4, Invitrogen). 

5.3 Results and discussion 

5.3.1 Characterization of FC-patterned plasmonic substrates 

 

Patterning over the plasmonic platforms was performed in hexagonal grid-like (Figure 

5.3 A-F) and triangular arrays (Figure 5.3 G-I). The FC-patterned plasmonic platform 

provides multiple organized sensing nodes that can be tailored, depending on the 

application. For example, triangular patterns can provide single isolated cells for further 

biological sensing applications as shown in this work and the organized hexagonal grid 

like channels can be utilized for interconnected cells such as neurons. 

 

Figure 5.3 shows that sensing windows are surrounded by the thin FC polymer film 

(thickness of 60 ± 5 nm; see Figure 5.2). The typical sizes of the features are limited to 

few microns in photolithography. Here we demonstrate in the hexagonal grids that it is 

possible to fabricate features as small as 4 µm as shown by the width of the channels in 

Figure 5.3 C-E. In the case of the triangular patterns, Figure 5.3 G-I shows that the 

plasmonic platforms are homogeneously distributed within the FC-polymer patterned 

regions. Here, the Au nanotriangles serve two purposes. First, the Au surface of the 

structures can be used for functionalization with a Raman reporter for a target molecule.  

Second, the bow-tie assemblies of nanotriangles serve as nanoscale antennas confining 

EM fields in the hot spot regions formed by the facing nanotriangles. Such localized 

enhancement of the EM field is critical to further enhance the Raman signal, providing 

monolayer sensitivity as well as surface detection of cells placed on nanotriangular 

plasmonic platform.  
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Figure 5.3 SEM images of FC-patterned plasmonic substrates with two different 

feature patterns: Hexagonal-grid like pattern (A-F) Triangular pattern (G-I) 

5.3.2 Controlled micro-defined functionalization with analyte   

 

In order to evaluate the confinement of the analyte by the patterned fluoropolymer thin 

film, as well as the SERS activity of the embedded plasmonic platform, the sensing 

device was functionalized with 4-nitrothiophenol (4-NTP). A schematic representation of 

the functionalized platform is shown in Figure 5.4A. 4-NTP binds specifically to gold, 

but not to the FC film. After a 24 h functionalization in a 1 µM solution of 4-NTP in 

ethanol, the substrates were gently rinsed with ethanol.  
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Figure 5.4 Collected confocal SERS spectra and mapping of functionalized 4-NTP 

on a FC-patterned plasmonic substrate. A) Schematic of the microwell plasmonic 

platform B) SERS mapping on an isolated triangular pattern C) Chemical structure 

of 4-NTP and collected SERS spectra of defined regions in B. Region 1 and 2 are 

located on plasmonic platform and FC polymer, respectively. D) Optical image of a 

node and channels positioned over the NSL substrate. SERS mappings of selected 

regions in D representing a node (E) and a channel (F) are shown in the interpolated 

images of E and F.   

 

SERS mapping was performed over the sensing area to evaluate the surface-enhanced 

activity on the gold nanotriangles and the FC polymer-coated regions. A SERS map of 4-

NTP on a single triangular pattern is shown in Figure 5.4B. This map corresponds to the 

NO2 peak (1337 cm
-1

) of 4-NTP and was obtained from the integration over the region 

from 1300-1350 cm
-1

. Selected steps of 1 µm and an acquisition time of 1 s/spectrum 

under 632.8 nm excitation were sufficient to probe the monolayer of 4-NTP. The SERS 

spectrum from a pixel found within the nanotriangles inside the pattern (labelled as 1 in 
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Figure 5.4B) shows a well-defined SERS spectrum of 4-NTP (Figure 5.4C).
38,39

 On the 

other hand, the SERS spectrum of the fluoropolymer region (labelled as 2 in Figure 

5.4B) shows only broad background peaks. The optical image of a hexagonal grid-like 

pattern on the plasmonic substrate is shown in Figure 5.4D. The selected regions for 

mapping are shown in red. SERS mapping areas were selected around the features of 

interest as 22×30, 30×30, and 10×10 m
2
 for Figure 5.4 B, E, and F, respectively. 

Figures 5.4E and F show SERS maps for 4-NTP that were obtained using the same 

procedure described above. 

 

These results demonstrate the ability of the patterned plasmonic platforms to provide 

positionally-controlled functionalization with specific molecules for sensitive detection. 

This is consistent with previous results demonstrating the ability of plasmonic platforms 

to provide ultra-sensitive detection down to sub-femtomolar concentration.
9,37,40,41

 It is 

also noteworthy that such surfaces can also be tuned to probe different fluorophores over 

the entire surface with confined positioning, by adding a thin layer of protection such as 

silica before fluorocarbon patterning.
2
  

5.3.3 Biocompatibility of FC-patterned plasmonic platform 

 

The biocompatibility of the FC polymer has been demonstrated in previous work, where 

it was also shown that FC-polymer patterning can be efficiently used for controlled cell 

isolation and proliferation.
32

 To ensure that these desirable properties were retained on the 

FC-patterned plasmonic platform, a culture of human embryonic kidney (HEK 293) cells 

and mice cortical neurons (14 DIV) were used. As shown in Figures 5.5A and B, HEK 

293 cells were efficiently isolated in the triangular windows on the plasmonic platform. It 

was also observed that these cells easily proliferated on the plasmonic nanotriangles.  
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Similar results were also obtained for the cortical neurons that were grown for 14 days on 

the hexagonal grid-like patterns. As shown in Figures 5.5C and D, the neuronal cell body 

and its projections were efficiently adapted within the channels on the plasmonic 

platform. This demonstrates the capability of these substrates to enable controlled cell 

positioning on the plasmonic platform for further surface-enhanced spectroscopic 

measurements of biomolecules of interest within the cells. Moreover, one can tune the 

feature patterns and interconnection dimensions with regards to the size of the specific 

cell line to optimize the sensing conditions.  

 

Figure 5.5  SEM images of positionally-controlled cells on FC-plasmonic substrates. 

A, B) HEK 293 cells; C, D) Cortical neurons; Blue arrows indicate cell nuclei; Red 

Arrows indicate cell membranes (A, B) and projections of neurons (C, D). 
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5.3.4 SERS activity of FC-patterned plasmonic platform 

 

With the aim of detecting glycans as described below, the Raman reporter molecule was 

changed to 4-MPBA. To investigate the SERS activity of the plasmonic platform with 

respect to this reporter molecules and cells, SERS spectra of 4-MPBA and HEK 293 cells 

were collected on FC-patterned plasmonic platforms and on a flat Au surface as a 

reference and are shown in Figure 5.6. The SERS activity of the platform for 4-MPBA is 

shown in Figure 5.6A, where characteristic peaks corresponding to the vibrational 

fingerprint of 4-MPBA are clearly observed. As shown in Figure 5.6B, the spectrum of 

4-MPBA bound to the flat Au used as the control surface lacks the spectral features of the 

reporter. By introducing the cell over the platform, spectral features of both the Raman 

reporter and cell were detected as shown in Figure 5.6C. Clear spectral features of 

cellular components appeared on the SERS spectrum obtained on the plasmonic platform 

as shown in Figure 5.6D without any Raman reporter. In contrast, when the cell was 

located on a flat Au surface functionalized with the Raman reporter, the fingerprint of the 

reporter was absent as shown in Figure 5.6E, thereby deactivating the plasmonic 

platform for further sensing over the cell surface.  

 

Although the flat Au surface is SERS inactive, a diminished Raman fingerprint of the cell 

was detected as shown in Figure 5.6E. This is due to the thickness of the cell on the Au 

surface, but the signal is not generated from the surface. However, in the case of a 

monolayer of the Raman reporter, it is not possible to obtain the signal. The peaks 

obtained for the cell at 1003, 1091, and 1651 cm
-1

, and the group of 2845, 2875, 2932 cm
-

1
 can be assigned to the phenylalanine of proteins and lipids, symmetric dioxy stretch of 

the phosphate backbone, amide 1 C=O and C=C stretching, and CH2 stretching of protein 

and lipid functional groups (See Table 5.1).
42

 The changes in two main peaks (labelled 
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with red star in Figure 5.6C) of 4-MPBA are assigned to B-OH stretching (1074 cm
-1

) 

and C-S stretching (1074 and 1574 cm
-1

). These two peaks have been well documented to 

undergo changes upon interaction with saccharides such as glucose.
58

 This interaction is 

the same one responsible for the proposed binding between the 4-MPBA on the SERS 

platform and the glycan on the cell surface. The peak at 1074 cm
-1

 representing the B-OH 

stretching undergoes the most significant change due to the interaction with glycans. 

Therefore, the change of signal for this peak was used for the glycan mapping over cell 

surfaces. The full assignment of 4-MPBA vibrational frequencies is also shown in Table 

5.1.
43,58

  

Table 5.1 SERS vibrational frequencies assignment of 4-MPBA and Cell 
42, 43,58

   

 

4-MPBA SERS 
Peaks (cm )

-1
Assignment Assignment

1000

1020

1074

1182

1472

1574

1003

1091

1448

1651

2845

2875

2932

 C-C-C 

 C-S

 B-OH

 B-C

 C=C  

symmetric dioxy stretch of the 

phosphate backbone and  C-C

of  nucleic acids lipid 

Cell SERS 
Peaks (cm )

-1

amide and  of  C=O C=C 
protein and unsaturated lipid

phenylalanine of protein and 
lipid

 CH2  of protein and lipid

 C-C

 (Bending);  (Stretching)

 CH2 proteins and lipids 
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Figure 5.6 SERS activity of 4-MPBA functionalized FC-patterned plasmonic 

platform representing 4-MPBA and HEK cell vibrational frequencies (A, C, and D); 

the non-SERS spectra are obtained on flat Au surface (B, and E) as a control 

compared to SERS signal obtained on SERS-active plasmonic regions containing 

nanotriangles within the fluoropolymer. A, B, C are normalized to the same scale. 

The same process is used for D, and E. Baseline correction is applied to all the 

spectra. 

R
a

m
a
n
 I

n
te

n
s
it
y
 (

a
.u

.)

Cell (SERS)

Absence of 4-MPBA Fingerprint

4-MPBA + Cell (non-SERS)

Enhanced Cell Fingerprint

1000 1200 1400 1600 2750 3000

R
a

m
a

n
 I

n
te

n
s
it
y
 (

a
.u

.)

4-MPBA + Cell (SERS)

1000 1200 1400 1600 2750 3000

4-MPBA (non-SERS)

Absence of 4-MPBA Fingerprint

4-MPBA (SERS) A)

B)

C)

D)

E)

1
0
0

0
1
0

2
0

1
0
7

4

1
1

8
2

1
4
7

2

1574

1
0
0

0
1
0
2

0

1
0
7

4

1
1
8

2 1
4
7

2

1574

1
0

0
3

1
0

9
1

1
4
4

8

1
6

5
1 2

8
4
5

2
8
7

5

2932

2
9

3
2

1
6

5
1

1
4

4
8

1
0
0

3

2
9
3

2

2
8
7

5
2
8
4

51
6
5

1

1
0

9
1

1
4
4

8

Wavenumber (cm )
-1

B
O HH O

B
O HH O

B
O HH O

B
O HH O

B
O HH O

Plasmonic Platform

S

B
O HH O

S

B
O HH O

S

B
O HH O

S

B
O HH O

S

B
O HH O

Flat Au

Cell

Plasmonic Platform

Glycan

S

B
OO

S

B
OO

S

B
OO

S

B
OO

S

B
O HH O

S

B
O HH O

S

B
OO

Cell

Plasmonic Platform

*

*

S S S S S

Glycan

S

B
OO

S

B
OO

S

B
OO

S

B
OO

S

B
O HH O

S

B
O HH O

S

B
OO

Cell

Flat Au



www.manaraa.com

110 

 

 

 

 

 

5.3.5 Glycan expression of different cell lines probed by SERS 

Boronic acids have the ability to form cyclic boronate esters with 1,2 and 1,3 diols, 

making them prime candidates for trapping and detecting saccharides.
44

 The first SERS 

based sensor towards glucose sensing was introduced by the Van Duyne group.
45

 A Ag 

film over a nanosphere pattern, where the Ag was functionalized with decanethiol was 

used in this study. More recently, boronic acid-based sensors have been used widely in 

newer glucose sensing applications using a variety of SERS and fluorescence methods.
46-

48
 Boronic acid moieties have also been used for aptasensing of glycoproteins,

49
 and for 

the detection of glycans over the surface of a cell using fluorescence microscopy.
50

 

Glycan expression on the cell surface has further been studied with SERS using a 

bioorthogonal Raman reporter and lectin-based functionalized metallic nanoparticles.
51,52

 

However, metallic nanoparticles are hindered by their tendency for heterogeneous 

distribution and the formation of aggregates, especially on rough surfaces such as cells. 

As the distribution of glycans on the surface of a cell varies between different cells, it is 

important to provide a homogenous sensing area beneath or above the cell surface in 

order to provide more accurate mapping of the expression of glycans over the cell 

surface. The fabricated platform here provides this homogenous sensing surface beneath 

the cell which should afford reproducible and accurate maps of different cellular 

compartments and the biomolecule of interest on the surfaces of cells. 

 

In the current study, 4-MPBA, having both a thiol for bonding to the plasmonic 

nanotriangles and a boronic acid moiety for interaction with sialoglycans on the cell 

surface serves as a Raman reporter. Upon binding to the surface glycans, a decrease to the 

intensities of the two main peaks of 4-MPBA as shown in Figure 5.6 C (1074 and 1574 

cm
-1

) is observed. The change of signal at 1074 cm
-1

 (B-OH stretching) was used to map 

the locations of glycans over the cell surface. Sialoglycans are present on the surfaces of 
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mammalian cells. They play pivotal roles in the regulation of molecular and cellular 

interactions.
53

 The elevated expression of sialic acid containing glycoproteins is 

indicative of disease and cancer progression.
51

 The sialoglycan composition of a cell 

changes with progression of the cancer. This is attributed to the ability of sialoglycans to 

prevent cell coagulation and promote rapid entry into the bloodstream to facilitate cancer 

metastasis.
51,54

 Thus, by tracking the expression of glycans over the plasmonic platform, 

it can potentially provide a tool to identify cancerous cells.  

 

Figure 5.7 Confocal SERS mapping of cell compartments and glycan expression on 

HEK 293, C2C12 and HeLa cells. Optical image of isolated single A) HEK 293, B) 

C2C12 , C) HeLa cell. Confocal SERS map of cell compartments of selected regions 

in optical images for D) HEK 293 cell, E) C2C12 cell, F) HeLa cell; Confocal SERS 

map of glycan expression over the selected regions in optical images for G) HEK 

cell, H) C2C12 cell, I) HeLa cell; J) Overlay of A+G; K) Overlay of B+H; L) 

Overlay of C+I. 
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Having demonstrated the successful position of cells on the plasmonic platform as 

described above, three different cell lines were chosen for the evaluation of glycan 

expression. HEK 293 cells were chosen due to their vast usage in cell biology research 

for many years and their established cellular growth rate and easy maintenance.
55

 This 

cell line serves as a control as it expresses no or minimal glycans.
56

 We also used C2C12 

mouse myoblast cells. This cell line was selected as a normal mammalian cell line 

representing a non-diseased state, where normal levels of glycan expression were 

expected. HeLa cells, the third selected cell line, are derived from cervical tumor cancer 

cells. This cell line is the oldest and most commonly used human cell line due to its 

remarkable durability and proliferation and is the first continuous human cancer cell line. 

Elevated glycan expression is known for cancer cell lines,
57

 and has previously been 

observed for HeLa cells by SERS.
51

 The optical images of selected isolated cells are 

shown in Figures 5.7 A-C.  In the first step, regions of the isolated cells on the plasmonic 

platform were mapped by SERS. These maps revealed the different compartments of 

cells such as the nucleus and membrane as shown in Figures 5.7 D-F. There are a few 

overlaps between the Raman reporter and cell vibrational frequencies such as those at 

~1000 cm
-1 

(Figure 5.6C). Regardless of these overlaps, by integrating the spectral range 

of 2800-3000 cm
-1

,
 
one is able to map the cell compartments over the platform as shown 

in Figures 5.7 D-F using confocal SERS mapping.  

 

The changes in the spectral fingerprint of the Raman reporter (4-MPBA) due to the 

interaction between 4-MPBA and glycans on the cell surface were used to map the glycan 

distribution over the cells. After baseline correction and normalization of the data 

contained within the maps, the average fingerprint of 4-MPBA based on each individual 

map was selected. This fingerprint was subtracted from each signal obtained on the cell 

area to map the changes over the cell. By analyzing the data based on the above 
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methodology, the SERS maps of the glycan expression over the cells were generated and 

are shown in Figures 5.7 G, H, and I for HEK 293, C2C12 and HeLa cells, respectively.  

 

Figure 5.8 Confocal SERS mapping of a single HeLa cell with nanoscale surface 

morphology obtained by AFM. A) Optical image of a single HeLa cell; B) SERS 

mapping of cell compartments; C) Overlay of SERS map in B with AFM 

morphology shown in D; D) AFM phase of the single cell shown in D. E) Glycan 

distribution on the same cell; F) Overlay of D and E. 

 

As shown in Figure 5.7G, a minimal change was observed for HEK cells, indicating 

insignificant expression of glycans on the surface of the cell. The expression of glycans 

over the C2C12 cell surface is quite clear. In the HeLa cells, the level of glycan 

expression suggested by the SERS map is significantly higher than that for the C2C12 or 

HEK 293 cells. This is in agreement with the results of confocal SERS mapping using 

lectin-based nanoparticles where it was shown that HeLa cells express more glycans than 
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Chinese hamster ovarian (CHO) cells, a cell line also known to exhibit low levels of 

glycan expression.
51

 The overlay of confocal SERS mapping of glycans over these three 

cell lines with the corresponding optical images of selected cell surface areas are shown 

in Figures 5.7 J-L.   

 

Figure 5.9 Average SERS spectra of 4MPBA and isolated cells on 4-MPBA 

functionalized-plasmonic platform; A) HEK 293 cell; B) C2C12 cell; C) HeLa cell. 

D) Ratios of the average intensities of 4-MPBA/Cell+4MPBA for 15 cells at 1074 cm
-

1
. Baseline corrections were applied to all spectra. 
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By combining AFM and subsequent SERS mapping on a single cell, it is also possible to 

obtain high resolution images of the cell morphology whilst providing high resolution 

confocal mapping of cell compartments or a molecule of interest such as glycans on the 

cell (See Figure 5.8). The corresponding SERS map-derived signals of 4-MPBA and 

cells over the platform functionalized with 4-MPBA were also shown for these three cell 

lines in Figure 5.9.  

To quantify the changes observed for these three cell lines in terms of glycan expression, 

the ratio of the intensities of the SERS signals of 4-MPBA over the bare plasmonic 

platform and cells ((SERSintensity (4-MPBA) / SERSintensity (4-MPBA + Cell)) were 

compared at 1074 and 1587 cm
-1

.  

As shown in Figure 5.9A, the ratios of 0.91 ± 4% and 0.98 ± 3% were observed for the 

aforementioned signals, respectively. This leads to the insignificant change observed for 

the HEK 293 cells as a result of no or minimal glycan expression. The ratios obtained for 

the C2C12 cells were slightly decreased to 0.83 ± 4% and 0.85 ± 5% as shown in Figure 

5.9B, corresponding to notable expression of glycans, as shown on the SERS map 

(Figure 5.7H). However, a significant change has been observed for HeLa cells 

representing the ratios of 0.51 ± 10% and 0.71 ± 10% as shown in Figure 5.9C. This 

leads to a distinct elevated expression of glycans over the cell surface compared to 

C2C12 and HEK 293 cells. Ratios of the average intensities of 4-MPBA/Cell+4MPBA 

for 15 cells at 1074 cm
-1

 were also shown in Figure 5.9 D representing the quantified 

differentiation between cancerous cell line (HeLa) and non-cancerous cell lines (HEK 

293 and C2C12). Similar observations in terms of the signal changes were reported 

previously for the 4-MPBA while interacting with glucose.
58

 It has been previously 

reported that the discrepancies between prostate cancer and non-cancerous cells in terms 

of glycan expression were much more clearly resolved using SERS compared to 

fluorescence microscopy. Comparative fluorescence studies only demonstrated a slight 
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difference between the two cell subsets.
51

 This introduces SERS as a critical non-invasive 

tool to differentiate cancer cells with high sensitivity. The statistical and error analysis of 

these signals are provided in Figure 5.10 with respect to the observed median values. 

 

Figure 5.10 Cell SERS analysis representing the ratios of the normalized average 

SERS (Intensity (4-MPBA)/Intensity (4-MPBA + Cell)) at 1074 and 1574 cm
-1

 for 15 

different cells for each cell line. The error bars are generated based on the percent 

deviation from the median ratio values. The obtained median values are 0.91± 4%  

(HEK 293 at 1074 cm
-1

), 0.98± 3% (HEK 293 at 1574 cm
-1

), 0.83± 4% (C2C12 at 

1074 cm
-1

), 0.85± 5% (C2C12 at 1574 cm
-1

), 0.51± 10% (HeLa at 1074 cm
-1

), 0.71± 

10% (HeLa at 1574 cm
-1

). 
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5.4 Conclusions 

In conclusion, we have demonstrated the fabrication of a device that provides a promising 

plasmonic sensing platform for positionally-controlled surface-enhanced spectroscopy 

applications. This platform not only allows one to locate the analyte/reporter in defined 

positions, but also provides the opportunity to isolate a single cell for analysis of specific 

biomolecules on their surfaces. The SERS detection of glycan expression in different cell 

lines including HEK 293, C2C12, and HeLa cells was demonstrated. It was observed that 

the HeLa cell line derived from cervical cancer cells, expressed more glycans over its 

surface compared to noncancerous HEK 293 and C2C12 cells. This strategy may be 

further applied to detect proteins on cell surfaces. The SERS platform with ultra-sensitive 

detection capability will be pertinent to study membrane proteins. Raman and infrared 

vibrations 
59

 are sensitive to the local environment, leading to monitoring the 

conformational changes of cell surface receptors.
52

 This provides the potential 

applications of the proposed platform to identify other types of cancer cells using SERS. 

Last but not least, the fabrication process of this platform is entirely compatible with 

other nanofabrication processes such as electron beam lithography. This only requires 

alignment control between two consecutive steps, which can be done easily with mask 

alignment technology. The inclusion of such modified platforms inside microfluidic 

channel is also possible, highlighting the versatility of the proposed method.
60
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Chapter 6  

6 Optical Properties of Silver and Gold Tetrahedral 
Nanopyramid Arrays Prepared by Nanosphere 
Lithography 3 

In this chapter, tetrahedral nanopyramids made of silver and gold over ITO/glass surfaces 

are fabricated. Our protocol is making use of NSL method with the deposition of thicker 

metal layers. After removing the microspheres used in the NSL process, an array of 

metallic tetrahedral nanostructures of ~350-400 nm height is formed. The reported 

procedure avoids the use of any stabilizing surfactant molecules that are generally 

necessary to segregate the individual particles onto surfaces. We focus here on the optical 

and the physical properties of these plasmonic surfaces using near-field spectroscopy in 

conjunction with FDTD modeling of the electric field. Remarkably, FDTD shows that the 

localized surface plasmon resonance is confined along the sharp edges of the pyramids 

that are parallel to the input polarization of the impinging excitation laser. The variable 

gaps between the edges of two adjacent pyramids show a broader localized surface 

plasmon and larger specific surface as opposed to the usual nanotriangle array. Localized 

enhancement of the electric field is experimentally investigated by coating the plasmonic 

surface with a thin film of photosensitive azopolymer onto the surface of the 

nanopyramids. The reported deformation upon radiation of the surface topography is 

visualized by atomic force microscopy and suggests the potentiality of these 3D 

nanopyramids for near-field enhancement. This last feature is clearly confirmed by 

surface-enhanced Raman spectroscopy (SERS) measurement with 4-nitrothiophenol 

                                                 

3
 A version of this chapter has been published in [J. Phys. Chem. C, (2013), 117, 14778]. 

Reproduced with permission of the American Chemical Society (ACS) publishing group. 
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molecules deposited on the pyramid platforms. The potentiality of such 3D 

nanostructures in plasmonics and surface spectroscopy is thus clearly demonstrated. 

6.1 Introduction  

Plasmonic structures produced by advanced nanofabrication techniques open up new 

possibilities when the manipulation of a resonant optical field is of interest.
1
 The current 

advances in plasmonics technology for active and passive photonic devices,
2-4

 

spectroscopic applications,
5-7

 and the conception of photovoltaic devices
8
 all arise from 

the possibility to fabricate metallic nanostructures into a short range arrangement  over 

large surfaces.  Electron-beam lithography,
9,10

 and focused ion beam are particularly well 

suited for the fabrication of high resolution features (~10 nm) on small areas. Other 

approaches using nanoimprint lithography,
8,11

 deep-UV lithography followed by epitaxial 

growth or atomic layer deposition or annealing 
8,12

 are common techniques used to make 

plasmonic surfaces with features as small as 10 nm over standard 4, 6 and 12 inch wafers.  

 

Among the available nanofabrication methods, NSL is a versatile and economical 

approach to make sharp nanostructures organized onto large surfaces.
13

 These 

nanostructures have various applications ranging from surface-enhanced spectroscopy, 

surface plasmon resonance measurements for biosensing applications
14

 to solar cell 

applications with the ultimate goal to improve the photovoltaic conversion efficiency.
15

 

Initially reported by Fischer et al.,
16

  NSL platforms use the properties of the localized 

surface plasmon resonance (LSPR) confined at the apices formed by two adjacent 

nanotriangles.
14,17-21

 In NSL, a monolayer of silica or polystyrene nanoparticles is formed 

onto mica, silicon or glass wafer.
22

 A thin layer of silver or gold with a thickness of 

around 30 nm is then deposited on this monolayer. Once the particles are removed, an 

array of metallic nanotriangles (Au, Ag) of 20-30 nm thicknesses is  formed over the 
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substrate. However in most cases, only a thin layer of metal is deposited, leading to 

simple flat triangles array.  

 

In this work, we show that the deposition of a thicker layer of metal with thickness of 

roughly half of the diameter of an individual particle lead to the formation of tetrahedral 

pyramids organized in a hexagonal pattern. The optical near-field and plasmonic 

properties of such nano-objects are investigated through EM field modeling and 

experimental measurements. More specifically, the optical properties of these arrays are 

first investigated using FDTD calculations for Ag and Au nanostructures along the 

transverse and longitudinal planes with respect to the polarization direction of 532 and 

632.8 nm excitation wavelengths. In order to visualize the areas with maximum field 

enhancement we used the approach, developed by Hubert,
23-25

 using a thin film of a 

photosensitive azobenzene polymer, and compared the topographical changes probed by 

AFM to the numerical calculations of the electric field.  

 

Finally, the Raman surface enhancements of these platforms are systematically 

investigated for gold and silver nanopyramids at both 532 and 632.8 nm excitations. 

Silver nanopyramids demonstrated the highest enhancement of the Raman signal, leading 

to the photochemical transformation of 4-nitrothiophenol (4-NTP). Photogeneration of 

dimercaptoazobenzene appears to be effective for both excitation wavelengths, although 

532 nm is always more efficient even under modest irradiation of 200 µW.  

Noteworthy, the proposed protocol can be used for a variety of other applications by 

changing the composition of deposited material. Such sharp nanopyramids could be used 

for hydrophobic surfaces, field emission, catalysis and many other applications.
13

 

Furthermore, these 3D individual objects can be further functionalized with guest 

molecules and being used as platform for enhanced optical sensing.  



www.manaraa.com

125 

 

 

 

 

 

6.2 Experimental section 

6.2.1 Materials 

Microscope coverslips (22 × 22 × 0.15 mm) were purchased from VWR International, 

Mississauga, Canada. Nochromix was purchased from Godax Laboratories Inc, 

Maryland, US. Hydrogen peroxide (30% v/v) was obtained from EMD Inc, Mississauga, 

Canada. Polystyrene microspheres (10% w/w) of 1 µm diameter were purchased from 

ThermoScientific Co (California, US). Sodium dodecyl sulfate (SDS) was obtained from 

Sigma-Aldrich, Missouri, US.  Glass slides coated with 110 nm indium thin oxide (ITO) 

were purchased from Lumtec (Taiwan). 

6.2.2 Preparation of samples by nanosphere lithography  

A detailed description of the preparation of the samples can be found elsewhere.
26, 17

 

Briefly, microscope coverslips used to prepare the monolayer of polystyrene particles at 

the water surface were first sonicated in acetone for 5 min followed by cleaning in 

nochromix solution in concentrated sulphuric acid for 15 mins. Subsequently, the slides 

were rinsed in Milli-Q ultrapure water (18.2 MΩ.cm) several times. These were sonicated 

for 1 hour in mixture of ammonium hydroxide: hydrogen peroxide: ultrapure water (18.2 

MΩ.cm) in ratio of 5:1:1. Afterwards, the glass slides were sonicated for 15 mins in 

water. Polystyrene microspheres solution was equilibrated to room temperature prior to 

use. Thereafter, 30 µL aliquot of polystyrene solution was mixed with 30 µL of ethanol 

(100%). 20 µL of the prepared solution was deposited on top of the dried coverslip. This 

was immediately introduced in the air-water interface of a 6 cm petri dish filled with 

ultrapure water (18.2 MΩ.cm). The coverslip floated on the air-water interface and the 

polystyrene colloidal solution spread out to the air-water interface. After the dispersion of 

the solution, the coverslip sank to the bottom of the petri dish. A few drops of 2% (w/v) 
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SDS solution in water were added to further group the nanospheres into an ordered 

monolayer. The nanosphere solution was finally picked up using a wet and clean glass 

slide coated with ITO and was allowed to dry overnight under a petri dish.  

6.2.3 Metal deposition and characterization 

After the samples dried, 350-400 nm of Au were deposited using electron beam 

evaporation (Hoser, Ottawa, Canada). The polystyrene particles were finally removed by 

sonicating the sample in ethanol for about a minute. The sample was then dried under the 

nitrogen gas. Scanning Electron Microscope (SEM) images were obtained using a LEO 

Zeiss 1540XB (Zeiss, Oberkochen, Germany). Atomic force microscopy measurements 

were performed with a NanoWizard II bioscience from JPK instruments (Berlin, 

Germany). AFM scans were conducted in non-contact mode using standard AFM tips 

(NCL20 Nano World Inc.; resonance frequency f=170 kHz, force constant k = 48 N/m or 

NSC15/AlBS Micromash; resonance frequency f=325 kHz, force constant k=46 N/m) 

6.2.4 FDTD simulations 

The distribution of the electric field intensity in close proximity of the silver and gold 

nanopyramids was calculated using FDTD Solutions (Lumerical Solutions, Inc). The 

calculations were set up as a three dimensional system with a 0.15 nm resolution grid, for 

1000 femtoseconds, including appropriate boundary conditions. A plane wave source was 

chosen at 532 or 632.8 nm working wavelengths, with a propagation axis perpendicular 

to the plane of the single or lattice of pyramids, and with a polarization along the X axis. 

The physical parameters, such as size and height of the nanopyramids, used in these 

calculations were obtained from the AFM and SEM data. The dielectric constant of the 

ITO, glass (silicon dioxide), silver and gold were described by the Drude model provided 

in the material database from the software. The calculation of the relative total electric 
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field intensity (|E|
2
) and its image plot was obtained from the contribution of its 

components (|Ex|
2
 + |Ey|

2
 + |Ez|

2
) and it was calculated at defined distances from the apex 

or the base of the pyramids.  

6.2.5 Azopolymer thin film preparation and photoinduced surface 

deformation 

A solution of poly{4´-[[[methacryloyloxy)ethyl]ethyl]amino]-4-nitroazobenzene-co-

methyl methacrylate} with 11% molar azobenzene moieties (p(DR1M-co-MMA)-11%) 

as shown in Figure 6.1 was prepared in chloroform (0.05 g in 5 ml of solvent) and spin-

casted over the nanopyramids at a speed of 1000 rpm. The films were annealed 10 min at 

100 ºC. Resulting film thickness was of 80 nm as measured by atomic force microscopy 

on a small scratch made with the tip of a needle. To induce azobenzene surface 

deformation, irradiation was conducted at 532 nm (Coherent, Compass 315M Laser) with 

an expanded beam of about 6 mm, and an irradiance set to 100 mW/cm
2
 for an irradiation 

time of 15 minutes. 

 

Figure 6.1 Chemical Structure of p(DR1M-co-MMA) 11% 
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6.2.6 Raman SERS measurements 

The Raman measurements were performed using a Horiba Jobin-Yvon Raman 

spectrometer equipped with a 600 grooves/mm grating and a 532 or 632.8 nm excitations 

with proper interference and edge filters. For both laser sources, intensities were adjusted 

to 2 mW or 200 µW at the sample using neutral density filters. Microscope objective of 

x40, 0.7 N.A. was used for all experiments. Pinhole of the spectrometer was opened to 

300 µm. All Raman spectra are shown without baseline correction. 

6.3 Results and discussion 

A variety of methods have been reported for the fabrication of organized arrays of sharp 

nanotip structures for SERS applications. Conical
27

 or pyramidal
28-30

  structures have 

been made using top-down approaches with the desire to obtain very sharp apex at the 

extremity of the pyramids, leading to efficient SERS platforms. Although, these sharp 

structures are often distant by several microns from each other.
31

 Other bottom-up 

approaches have also been reported with the intention to obtain sharp tips. However, due 

to the inhomogeneous distribution of such structures over a surface, their application for 

analytical purposes such as SERS is compromised.
31,32

 In the present work, it is shown 

that the sharpness of the tip is not the dominant effect for the enhancement. The 

proximity of the pyramids edges is a much more important factor in particular when the 

irradiation source is polarized in the transverse direction with respect to the tip 

orientation. Inverted pyramids engraved on silicon and coated with gold that are 

commercially available for SERS measurements (Klarite TM, Renishaw diagnostic),
33

 

use the variable gaps between two opposed edges of the inverted pyramid. However, 

since they are opaque, they can be used only in reflection geometry. On the contrary, our 

structures can be used for both reflection/transmission measurements since the pyramids 

are deposited on a transparent ITO-coated glass substrate.  
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6.3.1 Characterization of nanopyramid arrays fabricated by NSL 

 

Figure 6.2 A) SEM images of silver-coated polystyrene nanospheres. B) Array of 

silver nanopyramids. C, D) Individual silver nanopyramids before and after coating 

with an azopolymer thin film, respectively. E, F) Extinction spectra of the Silver 

(red) and gold(blue) nanopyramids. Excitation wavelengths as well as the [800-1800] 

cm
-1

 spectral ranges with respect to both excitations are indicated. 
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The resulting scanning electron microscopy (SEM) images of the nanopyramids formed 

by NSL are shown in Figure 6.2A-D after deposition of 400 nm layer of silver over the 1 

µm diameter polystyrene spheres by electron-beam evaporation. Noteworthy, similar 

structures have been obtained for gold nanopyramids (Figure 6.3).The triangular voids 

between three adjacent spheres in close contact get smaller during the deposition process, 

leading to the formation of pyramidal structures. ITO layer of 120 nm thickness over the 

glass slide forms an adhesive layer, avoiding further deposition of chromium or titanium 

deposition. It can be clearly seen that both deposited metal and the ITO layer 

demonstrated intrinsic roughness on the substrate (Figure 6.2A).  

 

Figure 6.3 False-colored SEM image showing arrays of gold nanopyramids 

 

Subsequent to the lift-off process of the polystyrene nanoparticles, a large surface (mm
2
) 

of homogeneous pyramids can be observed over the ITO substrate (Figure 6.2B). The 

extinction spectra of both silver and gold nanopyramid arrays (Figure 6.2E-F) show two 
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resonances corresponding to the quadrupolar and the dipolar contributions, respectively. 

For silver, the quadrupolar LSPR is expected at 550 nm, while for gold this resonance is 

red-shifted to 585 nm. The dipolar contributions are even further shifted in the near-

infrared range at 1035 nm and 1100 nm, respectively.  

6.3.2 FDTD calculations  

In order to estimate the influence of the geometry on the localization of the LSPR, we 

have performed a series of finite difference time domain calculations for Au and Ag 

nanopyramids irradiated with 532 and 632.8 nm wavelengths. The results of the 

normalized intensity enhancement,       
  depicted in logarithm scale are shown in 

Figure 6.4 for Ag/532nm, while other cases (Ag/632.8, Au/632.8 and Au/532) are 

demonstrated in Figure 6.5, 6.6 and 6.7. In Figure 6.4A-C, a single isolated pyramid 

was also investigated. The EM field was calculated in both longitudinal and transverse 

directions as shown in Figure 6.4A-C. In Figure 6.4A, the field is significantly confined 

along the edge of the pyramids, which is also oriented along the polarization direction. 

 

The typical field enhancement shown in log scale corresponds to 20 folds enhancement 

of the electric field, approximately. The field was calculated in the transverse plane with 

respect to light propagation 2 nm above the base of the pyramid  (Figure 6.4B) and 2 nm 

above the submit of the pyramid (Figure 6.4C). Localized enhancement can be clearly 

seen at the three base corners of the pyramids (Intensity enhancement of     ⁄    10
3
), 

while the enhancement at the summits of the pyramid is limited (Intensity enhancement 

of 10
1.68

~50). This indicates that the polarization of the input light must have a 

component along the tip axis and no component in the orthogonal direction. Such 

observation was reported for nanoscale resolution tip-enhanced Raman spectroscopy 

(TERS), where the impinging field was ideally polarized along the tip axis to excite the 
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plasmon modes resonance of the metalized tip. This was then employed as a local 

nanoantennae to probe the surface of interest.
34,35

 

 

 

Figure 6.4 FDTD calculation of the transverse (B,C,F,G) and longitudinal (A,D,E) 

components of the electric field (      
   Log scale representation) for silver 

nanopyramids prepared on ITO and irradiated at 532 nm. The transverse field 

shown in C,F) are calculated 2 nm above the tip(s) of the pyramid(s). The transverse 

field shown in (B,G)  are calculated 2 nm above the ITO base layer. 
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Figure 6.5 FDTD calculation of the transverse (B,C,F,G) and longitudinal (A,D,E) 

components of the electric field (      
   Log scale representation) for silver 

nanopyramids prepared on ITO and irradiated at 632.8 nm. The transverse field 

shown in C,F) are calculated 2 nm above the tip(s) of the pyramid(s). The transverse 

field shown in (B,G)  are calculated 2 nm above the ITO base layer 

 

Further modeling was conducted on an array of pyramids arranged in a hexagonal lattice 

along the longitudinal and transverse planes with respect to the propagation direction k. 

In Figure 6.4D, the field in the longitudinal plane of two facing pyramids was 

investigated. In this case, the field was also considerably confined along the facing edges 

of the pair of pyramids that formed variable gaps.  
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Typically, the field is confined from the base of the pyramids to about half the height of 

the pyramid array. This is as well observed for other material/wavelength configurations 

such as Ag/632.8 (Figure 6.6 D), and Au/632.8 (Figure 6.7 D) as opposed to Au/532 

(Figure 6.7 D). In the later configuration, the field enhancement was confined along the 

edges of the pyramid pairs. 

 

Figure 6.6 FDTD calculation of the transverse (B,C,F,G) and longitudinal (A,D,E) 

components of the electric field (      
   Log scale representation) for gold 

nanopyramids prepared on ITO and irradiated at 632.8 nm. The transverse field 

shown in C,F) are calculated 2 nm above the tip(s) of the pyramid(s). The transverse 

field shown in (B,G)  are calculated 2 nm above the ITO base layer. 
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However, no effective coupling was observed between the facing pyramids. The results 

clearly showed that the variable gap between opposed pyramids can be beneficial to 

applications in plasmon enhanced spectroscopy, since the matching between the plasmon 

resonance frequency and the excitation light frequency may not be critical. In other 

words, from calculations shown in Figure 6.4 and Figure 6.5, silver nanopyramids are 

expected to be efficient for field enhancement at both 532 and 632.8 nm wavelengths. For 

gold pyramids, the scenario is different and coupling was mainly effective when 632.8 

nm excitation was being used. As shown in Figures 6.5 D, and 6.6 D, coupling between 

facing pyramids was only observed at 632.8 nm, while for 532 nm the enhanced field was 

mainly observed along the opposed edges of the nanopyramids, but without any coupling. 

Based on these calculations, we can then expect a much lower overall enhancement for 

gold pyramids exposed by 532 nm wavelengths, while silver pyramids will be effective 

for both wavelengths.   

 

For surface-enhanced Raman, this is of interest but one must consider as well the 

enhancement of the Raman shifted frequencies. As shown in Figure 6.2E, ideally, both 

EExcitation and ERaman must be in resonance or pre-resonance with the extinction of the 

plasmon frequency to be enhanced. When these two conditions are fulfilled, the EM 

enhancement, F,  is given by
36

 

                                          |
           

  
|
 

|
      

  
|
 

                                 (1) 

where E0 is the incident electric field before enhancement. This yields to a SERS 

intensity that can be described by Eq. (2): 
9
 

                                           𝐼     𝐼 𝑁𝜎    |
           

  
|
 

                             (2) 
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where I0, N and  are the intensity of the incident light, the number of scattering centers 

and the scattering cross section, respectively. 

 

 

Figure 6.7 FDTD calculation of the transverse (B,C,F,G) and longitudinal (A,D,E) 

components of the electric field (      
   Log scale representation) for gold 

nanopyramids prepared on ITO and irradiated at 532 nm. The transverse field 

shown in C,F) are calculated 2 nm above the tip(s) of the pyramid(s). The transverse 

field shown in (B,G)  are calculated 2 nm above the ITO base layer. 
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It appears that excitations at 532 and 632.8 nm are both resonant for the silver 

nanostructure, which gave rise to the enhancement of the Raman signal in the fingerprint 

region of the molecule of interest. From the FDTD calculation, assuming an intensity 

enhancement of 10
3
 at both the excitation and Raman wavelengths for Ag/532 nm, 

equation (2) yields to an overall SERS EF of ~10
6
 which is comparable to reported values 

in literature.
10

 However, for gold pyramids, since the excitation of 532 nm is weakly 

resonant with the quadrupolar contribution of pyramidal structure, a smaller Raman 

enhancement is therefore expected. 

6.3.3 Mapping individual hot spots on photosensitive self-

developing azopolymer 

In order to visualize the confinement of the field over the whole plasmonic structure, 

experiments using a photosensitive polymer were conducted on the nanostructures. An 

azobenzene thin layer (80 nm) was spin coated over the whole silver nanopyramid arrays, 

leading to a smooth surface as shown in Figure 6.2 D. Azobenzene polymer is of 

particular interest since it undergoes surface migration and subsequent topographical 

changes upon irradiation by resonant light.  In this study, we used p(DR1M-co-MMA) 

with a molar ratio in azobenzene moieties of 11% (Figure 6.1). The donor (NH2) and 

acceptor (NO2) groups located on opposite sides of the azobenzene core are responsible 

for the large charge density on the molecule, leading to a colorful thin film material with 

an absorption at maximum wavelength of λ=500 nm and extinction coefficient of 

=70000 l.mol
-1

.cm
-1

. Therefore, excitation wavelength of 532 nm will be doubly 

resonant with i-the plasmon resonance of the silver pyramids array and ii- the absorption 

of the azobenzene polymer, leading to the most efficient surface deformation.  Atomic 

force microscopy images were collected on the samples before and after irradiation at 

532 nm with an irradiance of 100 mW/cm
2
 (Figure 6.8 A-B). Subtle changes in the 
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surface topography can be observed after irradiation during 15 min as shown by the 

indicated cross sections (1) and (2) on the AFM images. A topographical increase of 7±2 

nm can also be systematically measured at the center of a lattice (cross section (1)) over 

several individual lattices as shown in Figure 6.8 B, and D. The cross section shown in 

Figure 6.8 B, shows a bi-modal increases with two maxima separated by a smaller 

minimum. This change of topography is a very useful indicator of the field location 

knowing that azopolymers migrates from area where the field is large towards areas 

where the field is weaker. As shown in Figure 6.4 G for silver pyramids, the field 

calculated 2 nm above the pyramid base is indeed weaker at the center of the lattice, 

while the most intense field was observed at the apices between facing nanopyramids.   

The azopolymer molecules migrated towards the center of the lattice as expected. 

Besides, the small minimum between the two maxima can be explained by the 

competition between the migration processes coming from both sides. Similar effect has 

been reported previously for studies where gratings were inscribed holographically onto 

thin films of azopolymers, leading to half periodic structures with respect to the 

interference fringe spacing.
37

 This is result of photodriven mass transport  from 

successive photoisomerization steps.
38,39

 This photoinduced mechanism suggests possible 

strong alterations of the local viscoelastic properties of the polymer and changes of the 

local densities that further alter the migration of the polymer chains towards the center of 

the lattice.
37

. Similar changes were obtained when the cross section was measured along 

closely facing triangles (cross section (2) on the AFM images). As shown in Figure 6.8 

E-F, the topographical change is insignificant. It is less than 5 nm in height variation, but 

yet very clearly observable by AFM. Also, the change of the slopes is due to the 

migration of the photosensitive polymer mediated and amplified by the plasmonic 

resonance. The slope of the polymer thin film deposited over the pyramids was increased 

after irradiation, which indicated a mass flow from the area where enhancement of the 
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field is high towards regions where the field is weaker. In addition, the gap between the 

two facing pyramids indicated a weaker field enhancement at the exact center between 

the facing pyramids. Thus, the polymer migration was predominantly observed along the 

edge of the pyramids. 

 

Figure 6.8 A,B) AFM images of Ag nanopyramids prepared on ITO coated with a 80 

nm azopolymer thin film layer  before (A) and after (B) 15 min of irradiation with a 

irradiance of 100 mW/cm
2
 . C,D) topographical cross sections along the center of a 

hexagonal lattice (noted ) of Ag nanopyramids before and after irradiation. E,F) 

AFM topographical cross sections along the closest facing silver pyramids (noted ) 

before and after irradiation. 
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6.3.4 SERS measurements  

The capability of these pyramidal structures was further investigated for SERS 

application using a standard molecule. To perform this, the structures were immersed in a 

1 mM solution of 4-NTP for 24 hours and subsequently rinsed with ethanol to remove 

non-adsorbed species. Both gold and silver pyramid arrays were investigated with 

excitation wavelengths of 532 and 632.8 nm. The Raman spectra measured on the 

pyramidal nanostructures are reported in Figure 6.9 together with the reference spectra 

performed on flat portion of the deposited metal. None of the reference spectra measured 

on flat gold and silver areas showed spectral feature, emphasizing the interest of using the 

nanostructured surface for the study of adsorbed monolayers.  

 

The spectra shown in Figure 6.9A demonstrated an intense signal for gold pyramids 

upon irradiation at 632.8 nm, whereas the Raman spectrum was weak for 532 nm. This 

confirms that the matching between the excitation wavelength and the plasmon resonance 

is critical and was fulfilled only for the Au/632.8 case. The main spectral features 

observed in Figure 6.9A at 1078, 1107, 1340 and 1572 cm
-1

 are assigned to 7a (coupled 

with C-S bond), -N, s NO2 and 8b of the phenyl group, respectively.
40

 The SERS 

spectra of silver nanopyramids irradiated by 632.8 nm laser with 0.2 and 2 mW 

intensities are shown in Figure 6.9B. Noticeably, the initial spectrum recorded with 0.2 

mW was similar to the Au/632.8 case in terms of relative intensities and magnitude. 

Silver pyramidal nanostructures have therefore a plasmon that can be used in conjunction 

with both irradiation wavelengths since, as shown in Figure 6.2E, both 532 and 632.8 nm 

wavelengths are pre-resonant with the plasmon absorption. Considerably, the initial 

spectrum recorded with 0.2 mW was also similar to the Au/632.8 case in terms of relative 

intensities. However, when the laser power was increased to 2 mW, the collected spectra 

showed significant changes. This could be understood by considering the fact that 2 mW 
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laser focused with high N.A. microscope objective implies a typical irradiance in the 

MW/cm
2
 range. 

 

Figure 6.9 Raman spectra of 4-NTP adsorbed on the nanopyramid arrays. The 

spectra were recorded with same acquisition time (10 s). No baseline correction was 

performed. Raman spectra acquired on flat metal portions (no structures) and 

functionalized the same conditions as shown. A) SERS spectra collected on Au 

nanopyramids with 632.8 and 532 nm irradiations. B) SERS spectra collected on Ag 

nanopyramids with 632.8 nm excitation under 0.2 mW (initial) and 2mW (final) 

irradiations. C) SERS spectra collected on Ag nanopyramids with 532 nm excitation 
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under 0.2 mW and 2mW irradiations. D) SERS spectra recorded at 632.8 nm on Ag 

nanopyramids at 2 mW (initial) and 0.2 mW (final). 

 

New bands at 1142, 1387 and 1437 cm
-1

 (noted 1, 2 and 3 in Figure 6.9B) were assigned 

to C-H, N=N+C=C+C-H and N=N+C=C+C-H, respectively, while the intensity of the 

1340 cm
-1

  band (s NO2 ) was decreased. Such observations were investigated by several 

groups and were assigned to photoinduced reduction of 4-NTP on Ag surfaces to form 

dimercaptoazobenzene (DMAB).
40-42

 More recently, time resolved measurements using 

tip-enhanced spectroscopy were reported using a silver–coated AFM tip irradiated by a 

532 nm excitation laser. Nonetheless, a non-resonant laser at 632.8 nm was used to probe 

the photoreduction as a function of irradiation time.
43

  

 

Our results indicated that for these particular plasmonic platforms, even 632.8 nm can 

trigger the photoreduction of 4-NTP into DMAB as long as irradiation intensity is 

sufficiently high. The same condition was also applied to silver structures at 532 nm, 

which exhibited the highest enhancement as shown in Figure 6.9C.  For both intensities 

of the excitation source, the spectra showed the new peaks assigned to the formation of 

DMAB as in the case of Ag/632.8. However, the peak associated with the symmetric 

stretching mode of NO2 was even further reduced in intensity, indicating a higher 

photoreduction yield upon 532 nm irradiation. Similarly, the Raman band at 1183 cm
-1

 

(noted 4) in Figure 6.9C was significantly increased which has not been addressed in 

other studies. This clearly indicates that Ag/532 offered the highest enhancement 

conditions even at low power.  

 

We also compared side-by-side the SERS spectra from gold nanopyramids and 

nanotriangles made by NSL as shown in Figure 6.10. In the latter case (nanotriangles), 
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the thickness of gold was of 30 nm. At 632.8nm excitation, the SERS spectra are 

systematically more intense for the nanopyramids as compared to the nanotriangles by a 

typical factor of ~4. This gain confirms the interest of the nanopyramids compared to the 

nanotriangles for ultra-sensitive measurements.  

 

Figure 6.10 Raman spectra of 4-NTP adsorbed on the nanotriangles (30 nm Au), 

and nanopyramid arrays (400 nm Au). The spectra were recorded with same 

acquisition time (10 s) and irradiation wavelength was 632.8 nm wih I=2 mW. 

 

Significant relative intensity changes indicated the photoinduced transformation of the 

molecule of interest. Thus, a control experiment was performed to confirm the 

irreversibility of the photoinduced transformation. Using Ag/632.8 nm conditions, 

intensity of 2 mW was first used to collect the first spectrum shown in Figure 6.11 (noted 

(1)). The second spectrum (noted (2) in Figure 6.11, was collected after irradiation with 

0.2 mW similar to the conditions of Figure 6.9B. In such sequence the spectral features 
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recorded with the lowest intensity were identical to the spectra measured with higher 

intensity, confirming the irreversibility of the photoinduced reaction. 

 

Figure 6.11 SERS spectra of 4-NTP adsorbed onto silver nanopyramids recorded 

initially under 2 mW irradiance followed by a measurement under 0.2 mW with 

identical acquisition time (10 s). 

6.4 Conclusion 

In the present study, we have prepared arrays of metallic nanopyramids made of gold and 

silver using NSL. We focus our study on plamonics properties and near field 

enhancement of such real 3D nanostructure. Both platforms were investigated upon 

irradiation by 532 and 632.8 nm wavelengths, since the quadrupolar plasmon resonance 

of both structured metals have resonance close to these wavelengths. FDTD calculations 
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in the transverse and longitudinal planes with respect to the propagation direction of the 

excitation source were systematically conducted for the four cases, namely Au/532, 

Au/632.8 and Ag/532, Ag/632.8. These calculations clearly showed that the silver 

nanostructure can efficiently be excited at 532 and 632.8 nm, whereas gold nanostructure 

is not expected to be efficient at 532 nm. To complement these FDTD simulations, AFM 

characterization and Raman measurements were also conducted on the samples using 

photosensitive azopolymer thin film. This allows one to monitor topographical changes 

on the surface of silver nanostructure coated with a photo responsive film. In addition, 

this opens up the opportunity to indirectly locate the area of high field enhancement over 

the substrate. Finally, these structures were tested for SERS measurements with 4-NTP 

molecules. As a result, SERS was observed predominantly for Ag/532, Ag/632.8 and 

Au/632.8. For silver nanostructures, photoreduction of 4-NTP to DMAB was also 

observed. In the case of 632.8 nm irradiation, it was shown to be dependent on the laser 

intensity. Such changes were irreversible, emphasizing the interest of metallic plasmonic 

platforms not only for surface enhancement, but also for photoinduced chemical reaction 

at a monolayer of a material on the surface. These nanopyramid arrays fabricated on a 

conductive and transparent substrate can be further integrated in solar cells, benefiting 

from both the plasmon enhancement of the solar spectrum and the electronic conduction 

of the ITO layer, yielding to a higher photovoltaic conversion efficiency. Beyond optical 

applications, we suggest that these high aspect ratio structures have also potential as 

super-hydrophobic surfaces and field emission antennae. The extremely simple but 

efficient protocol proposed here based on the well-known NSL lithography can be 

applied to many materials for the preparation of real 3D sharp nanopyramids array on 

large surfaces.   
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Chapter 7  

7 Tunable 3D plasmonic cavity nanosensors for surface-
enhanced Raman spectroscopy with sub-femtomolar 
limit of detection4 

Metallic nanohole arrays (NHAs) with a high hole density have emerged with potential 

applications for surface-enhanced Raman spectrosocopy (SERS) including the detection 

of analytes at ultra-low concentrations. However, these NHA structures generally yield 

weak localized surface plasmon resonance (LSPR) which is a prerequisite for SERS 

measurements.  In this chapter, a compact three-dimensional (3D) tunable plasmonic 

cavity with extraordinary optical transmission properties serves as a molecular sensor 

with sub-femtomolar detection. The 3D nanosensor consists of a gold film containing a 

NHA with an underlying cavity and a gold nanocone array at the bottom of the cavity. 

These nanosensors provide remarkable surface plasmon polariton (SPP) and LSPR 

coupling resulting in a significantly improved detection performance. The plasmonic 

tunability is evaluated both experimentally and theoretically. A SERS limit of detection 

of 10
-16

 M for 4-Nitrothiophenol (4-NTP) is obtained along with distribution mapping of 

the molecule on the 3D plasmonic nanosensor. This results in an improved SERS EF of 

10
7
 obtained from a femtolitre plasmonic cavity volume. The tunability of these sensors 

can give rise to a potential opportunity for use in optical trapping while providing SERS 

sensing of a molecule of interest. 

 

                                                 

4
 A version of this chapter has been published in [ACS Photonics, (2015), 2, 752]. 

Reproduced with permission of the American Chemical Society (ACS) publishing group. 
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7.1 Introduction 

Molecular plasmonics has shown great promise for trace detection of molecules and 

biomolecules adsorbed onto rationally designed metallic platforms or particles.
1-4

 Among 

the techniques benefiting from recent advances of plasmon-mediated optical 

measurements, SERS has pushed the limits for detection of even lower concentration of 

analytes. It yields chemical and biological sensing using a variety of surfaces and 

approaches that mainly relies on the drastic enhancement of the weak Raman signal 

through the enhancement of the local EM field in the vicinity of the metallic surface.
5,6

 

As an analytical technique, SERS provides label-free sensing with high sensitivity and 

chemical specificity.
7,8

 Rational development of SERS platforms includes the production 

of reproducible engineered metallic platforms with arrays of well-defined structures that 

combine the functions of (i) trapping the analyte of interest, (ii) improving the sensitivity 

of the measurement by several orders of magnitude and (iii) providing quantitative 

measurements. As the enhancement of EM fields occurs in nanoscale regions, so-called 

plasmonic hot spots, integration of specific nanostructures for trapping the interested 

molecule in these hot spots can improve the sensitivity and reduce the detection time for 

SERS.
9-13

  

Arrays of periodic nanoholes in a metallic film can act as a plasmonic substrate with 

diverse applications.
14-17

 The nanohole array (NHA) structure in an optically thick metal 

film allows for momentum matching between an incident light on a NHA and the surface 

plasmon (SP) waves existing at the interface between a metal and a dielectric material.
15

 

The excitation of SPs, so-called surface plasmon polariton (SPP), by light incident on a 

metallic NHA results in extraordinary optical transmission (EOT) and optical resonances. 

The EOT properties of a NHA depend greatly on material composition and geometrical 

parameters of the structure.
18-21

 Owing to scattering order of nanoholes, spacing between 

them and variable  angle of incidence on the NHA, various EOTs related to different SPP 
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modes can be generated at different optical frequencies such as (1, 0) and (1, 1) 

transmission resonances.
15

 NHAs have been widely used in various plasmonic 

applications ranging from optical trapping to sensing of biologically relevant 

molecules.
20,22-28

 For instance, the array acts like a tunable filter since the wavelength 

selectivity of the array transmission can be adjusted simply by changing the 

periodicity.
29,30

 Many studies have been performed to improve the performance of NHAs 

for sensing applications. For example, one of the most common applications of NHAs is 

surface plasmon resonance (SPR) refractive index sensing.
22,25,31

 It has been shown that 

the most optimal performance was achieved in SPR sensing for a NHA structure 

consisting of an ultra-smooth NHA metal surface, elliptical nanohole shapes, and nearly 

SP energy matching between the top and bottom surfaces of the NHA.
32

  

A localized surface plasmon resonance (LSPR) occurs when the incident light interacts 

with surface plasmon confined in the vicinity of a metallic nanoparticle, the size of which 

being comparable to or smaller than the excitation wavelength.
33-35

 As a result, the EM 

field located in the near-field of the surface is greatly enhanced.
36,37

 In this context, the 

aim is to design a plasmonic structure that will generate a strong LSPR coupling to 

further enhance the signal of the adsorbed molecule on a 2D or 3D plasmonic 

nanostructure.
38

 Such LSPR plays a pivotal role in many surface-enhanced spectroscopic 

techniques such as surface-enhanced fluorescence, Raman and infrared spectroscopies, 

so-called SEF, SERS, and SEIRA, respectively.
33,34,39

  

An individual nanohole can produce transmission based LSPR, which is associated to an 

interaction of the incident light with a LSPR around the nanohole.
29

 The similar 

properties have been reported for a NHA with enhanced electric field intensity around 

each nanohole at the corresponding resonance wavelengths.
23

 For SERS measurements, 

NHAs provide typical EFs below 10
5
 which are weaker than other reliable SERS 

substrates.
11,12,40

 More importantly, these EFs are not reported for very low 
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concentrations of the probe molecules. The reported range is between 2-10
4
, which is still 

comparable with some SERS substrates but not likely reliable compared to sensitive 

SERS substrates with EFs of over 10
5
.
8,12,41

  

Herein, we evaluated the SERS performance of a 3D metallic nanostructure composed of 

an array of nanoholes and co-registered nanocones embedded in a single cavity. The 

optical properties of the nanosensors were investigated experimentally and using optical 

field modeling. Three major features of these sensors are highlighted in this work: i) 

plasmonic tunability; ii) SERS of 4-Nitrothiophenol (4-NTP) covalently attached on these 

sensors, and finally iii) limit of detection of 4-NTP adsorbed onto the sensors with fast 

acquisition time along with mapping the distribution of the molecules over the platform 

generating strong signals on the sensors based on the molecular fingerprint.   

7.2 Experimental section 

7.2.1  Fabrication of 3D plasmonic cavity nanosensors   

The plasmonic cavities were fabricated using EBL methodology. First, electron-beam 

physical vapor deposition (EB-PVD) was used to deposit a 3 nm thin Ti layer on a Pyrex 

substrate. This ensured that the substrate surface was conductive for the EBL writing 

process. A 500 nm thick layer of photo-resist (negative tone photoresist ma-N 2403) was 

then spin-coated onto the Ti layer and soft baked at 90˚C for 60 s. The sample was placed 

into an EBL instrument (LEO, 1530 e-beam lithography) where the nanohole array 

patterns were written on the photoresist layer. The sample was developed in MF 319 

developer (Shipley, Marlborough, MA) for 40 s leaving behind photo-resist nano-pillars, 

which acted as a mask to create the nano-holes in the metal film. Another 3 nm thick Ti 

layer was deposited to create an adhesion layer followed by 80 nm deposition of Au 

using EB-PVD deposition instrument. Once the Au layer was deposited, the sample was 
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left in PG Remover solution at 80˚C to lift-off the photoresist nano-pillars and leave 

behind the NHAs in the Au film. Once the NHAs were created, a TFT Ti etchant 

(Transene Company, Inc.) was used to etch away both Ti layer and Pyrex, forming a 

large cavity beneath the gold NHA. The sample was in Ti etchant for 70 s and resulted in 

a 250 nm deep cavity. Afterwards, 150 nm Au was deposited onto the structure to create 

a truncated nano-cone beneath each nanohole on the bottom surface of the cavity.  The 

SEM images of the fabricated 3D plasmonic nanosensors with 500 nm periodicity are 

shown in Fig. 1(c). The presence of the 250 nm deep cavity and 150 nm tall truncated 

NCA beneath NHA the membrane structure are shown in these SEM images. Each 3D 

nanosensor had a dimension of approximately 5 µm by 5 µm and was repeated in a 7 by 7 

square lattice arrangement with a periodicity of 10 µm. In order to clean the platform for 

further use, O2 plasma or UV-O3 exposure are efficient methods. The substrate can also 

be cleaned by Nanostrip
TM

 (90% sulfuric acid, 5% peroxymonosulfuric acid, <1% 

hydrogen peroxide, and 5% water) to remove all the impurities and subsequently washed 

with ultrapure MilliQ water and dried under nitrogen prior to O2 or UV-O3 cleaning.  

7.2.2  Numerical simulation of 3D plasmonic cavity nanosensors   

Modeling of the EM field was performed using FDTD method to numerically solve 

Maxwell’s equations (FDTD Solutions, Lumerical Inc., Vancouver, Canada). As shown 

Figure 7.1, FDTD calculations were performed by creating a 3D unit cell that was 

simulated with periodic boundary conditions on the x- and y-axes, and a perfect match 

layer (PML) boundary condition in z axis. A rectangular, Cartesian style mesh was 

placed around the unit cell with a maximum mesh setting of 3 nm. The mesh settings can 

be altered to increase the accuracy of the simulation by increasing the number of points 

within the mesh. 
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Figure 7.1 Layout of FDTD simulation model including boundary conditions for 

optical properties and electromagnetic field distribution of 3D plasmonic 

nanosensors with a periodicity of 500 nm 

7.2.3 Optical characterization setup   

The extinction spectra of the platforms were measured, using an inverted microscope 

(Nikon, TE300) attached to a photometer (PTI, D104), monochromator (PTI, 101), and a 

photo-multiplier (PTI, 710). A 100 W halogen lamp produced unpolarized white light, 

which was focused onto the structure using a bright-field condenser lens (N.A. = 0.3) on 

the microscope. A X20 objective (N.A. = 0.45; Nikon, 93150) was used to collect the 

scattered light, which was then guided to the photometer using a beam splitter. Light 

from a desired region on the sample was selected by adjusting the apertures on the 

photometer. The light from this desired region was then guided to the monochromator for 
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spectral analysis.  The optical transmission spectra were corrected for the background 

intensity (dark noise) and normalized by the intensity of the light source. 

7.2.4  SERS measurements and sample preparation   

The Raman measurements were performed using a Horiba Jobin-Yvon Raman 

spectrometer equipped with a 600 g/mm grating and a 632.8 or 785 nm excitation with 

proper interference and edge filters. For both laser sources, intensities were set to 2 mW 

or 200 μW at the sample using neutral density filters with 1.0 or 2.0 optical densities, 

respectively. Olympus microscope objectives of X20 (N.A.= 0.5), X40 (N.A.= 0.75), and 

X100 (N.A.= 0.9) were used for all experiments. The pinhole of the spectrometer was 

opened to 200 μm. All of the Raman spectra collected for individual spots were the result 

of 3 s exposures; while the maps were the result of 1 s exposures. The maps were 

integrated within 1316 to 1354 cm
-1

. A stock solution of 4-NTP (10
-3

 M) in ethanol was 

made. This stock solution was then further diluted to yield 2 mL of solutions with 

concentrations ranging from 10
-6

 to 10
-18

 M. Two drops of the as-prepared solution (~100 

μL) were deposited onto one platform, and then placed into a petri-dish. All glassware 

used for functionalization and washing were new to avoid contamination. The petri-dish 

was sealed, and stored in the refrigerator for the duration of the functionalization. For the 

determination of limit of detection, the platforms were functionalized overnight (24 

hours). Each platform was then washed into a beaker of ethanol (99.9%) 3 times to 

remove any excess of 4-NTP not adsorbed onto the surface. The platforms were then 

dried under nitrogen. Each SERS measurement was performed 3-5 times. The spectra of 

10-15 spots were collected on each 3D nanosensor and the average value of the 

intensities was used in all relevant graphs. 
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7.3 Results and Discussion 

7.3.1  Physical characterization of the fabricated 3D plasmonic 
cavity nanosensors  

 

Figure 7.2 Schematic of 3D plasmonic nanosensor displaying a cavity beneath the 

Au layer, and truncated nanocones at the bottom of the cavity. 

The schematic representation of 3D plasmonic cavity nanosensors is shown in Figure 

7.2, generating SPP and LSPR couplings upon irradiation of the impinging light. 

Scanning electron microscopy (SEM) images of the nanosensors are shown in Figure 

7.3. These sensors are composed of a NHA membrane with co-registered nanocone array 

(NCA). As shown in Figure 7.3A, this NHA-NCA platform consists of a NHA 

membrane in a 230 nm thick Au film on a Pyrex substrate with a 250 nm deep cavity, 

below the surface of the Au film. It can be seen in Figure 7.3B that at the bottom of the 

cavity, the co-registered truncated nanocones are aligned with the center of the 

nanoholes.  

Demonstrated in Figure 7.3, a truncated cone has a height of 150 nm with an apex 100 

nm away from the Au film. The hole sizes varied from 74 to 87 nm and the periodicities 
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varied from 425 to 500 nm with increments of 25 nm. A nanohole consists of two 

truncated nanocones with their apices connected at the center of the nanohole. The apex 

of the cone has a 1:2 ratio with respect to the cone base diameter. For the simulations, the 

complex refractive indices of Au were provided by Palik and a refractive index of 1.474 

was used for Pyrex.
42

 

 

Figure 7.3 SEM images of 3D plasmonic cavity nanosensors composed of a NHA 

membrane with co-registered NCA. a) A 230 nm thick Au NHA membrane with 500 

nm periodicity and 87 nm hole radius fabricated on a Pyrex substrate with a single 

250 nm deep cavity. b) Magnified image shown in (a) representing the dimensions of 

the truncated Au nanocones with an apex radius of 44 nm, a base radius of 87 nm, 

and a height of 150 nm. 

7.3.2 Tunable cavity 3D nanosensors   

In both simulated and experimentally measured optical transmission spectra of the 3D 

nanosensors in Figure 7.4, multiple transmission resonances were observed due to the 

SPP corresponding to various scattering mode indices. A metallic NHA with a square 

lattice arrangement of nanoholes results in momentum matching between the in-plane 

wave-vectors of the incident light and the SP, when  ⃗⃗   
 

 
       ⃗⃗    ⃗⃗  is 
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satisfied. The expression 
 

 
     is the in-plane component of the wave vector of the 

incident light, where ω is the frequency of the incident light, c is the speed of the light, 

and θ is the incident angle of light.
43

 The reciprocal lattice wave vectors  ⃗⃗  and  ⃗⃗  

describe a square lattice when | ⃗⃗ | = | ⃗⃗ | = 
  

 
, where a is the spacing between adjacent 

nanoholes, and m and n are integers expressing the scattering mode indices. From the 

conservation of energy, the SP dispersion relationship on a smooth metal surface can be 

expressed as  | ⃗⃗  |   | ⃗⃗ |√
    

     
 , where εd and εm are the dielectric functions of the 

incident medium (at the top or bottom surface of nano-hole) and the metal film. By 

combining the momentum matching condition of the light-SP for light at normal 

incidence to the NHA and the dispersion relation of the SP, the EOT positions of a NHA 

associated to the SPP can be expressed by Equation 1: 

     
 

√     
√
    

     
        (1) 

The simulated and experimentally measured optical transmission spectra of the platforms 

for various periodicities are shown in Figure 7.4 for platforms surrounded by air (n = 

1.00) or immersed in water (n = 1.33).  When the structures are in air, both simulation 

and experimental results showed a single transmission resonance, which can be 

associated to the (-1, 0) excitation of the SP on the top and bottom surface of the NHA 

membrane. However, this resonance has been also induced with the presence of truncated 

nanocone at the bottom of the cavity. The apex of the truncated nanocone and the bottom 

of the nanohole would generate nanoantenna effect at the resonance wavelength, which 

would generate localized SP between two afore-mentioned nanosensors. As a result, (-1, 

0) resonance is related to not only SPPs but also LSPRs. As the periodicity of the hole 
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decreases, the resonance transmission of the 3D nanosensors are blue-shifted to shorter 

wavelengths (Figures 7.4A and 7.4C).  

 

Figure 7.4 Optical transmission spectra of 3D plasmonic nanosensors for simulated 

and experimental results. The periodicities range from 425 nm (green curve) to 500 

nm (red curve) with increments of 25 nm. Simulated results for (a) air (n = 1.00), (b) 

water (n = 1.33), experimental results for (c) air (n = 1.00), and (d) water (n = 1.33). 

The existence of LSPR coupling was observed between the nanocone and nanohole in the 

simulation model, which resulted in generation of an antenna and strong hot spot within 

this area. Although a nanocone structure without the presence of nanohole could have 

two LSPRs located at the base and at the apex, the combination of both structures yields a 

strong local coupling of the respective LSPRs. The presence of a nanocone alters both the 

resonance frequency of the LSPRs and the transmission efficiency of a NHA due to the 

shadowing effect and optical absorption of the nanocone.
23

 However, a NHA without 

nanocones cannot generate strong LSPR similar to the proposed structure and would have 
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more limited detection and sensitivity in the SERS applications according to the previous 

studies on NHAs.
11,12,40

  

 

Figure 7.5 Electric field (|E/E0|
2
, log scale representation) intensity of a unit cell in a 

3D plasmonic nanosensor displayed on the xz plane. The electric field intensity for 

air (n = 1.00) at (a) (-1,0) peak at 594 nm, (c) 633 nm, and (d) 780 nm. The SEM 

image of the actual structure represented simulated images has been shown in (b). 

The electric field intensity for water (n = 1.33) at (e) (1,1) peak at 620 nm, (f) (-1,0) 

peak at 738 nm, (g) 633 nm, and (h) 785 nm. 

 

Due to the bulk plasmon wavelength of Au at 500 nm, the resonance of the 3D 

nanosensors decays for smaller periodicity as the resonance blue-shifts towards 500 nm. 

When the 3D nanostructure is encapsulated in water, the LSPR-SPP mediated resonances 

of the 3D nanosensors are red-shifted towards longer wavelengths (Figures 7.4B and 
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7.4C). Two LSPR-SPP resonances were seen in the optical transmission spectra of the 

3D nanosensors. The resonances were associated to (-1, 0) and (1, 1) scattering hole 

orders of the 3D nanosensors.  The electric field intensity of 3D nanosensors with 500 nm 

periodicty is shown in Figure 7.5 at the LSPR-SPP resonance wavelengths of 633 and 

785 nm for both air and water surrounding media.   

 

Figure 7.6 Simulated optical transmission spectra of 3D cavity plasmonic 

nanosensors in Ethanol (n=1.36). The periodicities range from 425 nm (green curve) 

to 500 nm (red curve) with increments of 25 nm. 

 

The electric field distributions at LSPR-SPP resonances for air and water confirm that 

there is a strong LSPR coupling between the bottom of the hole and the apex of the 

nanocone. This structure generates the highest electric field at the resonance peak. 

0

0.02

0.04

0.06

0.08

0.1

0.12

Wavelength (nm)

O
p

ti
c
a

l 
tr

a
n

s
m

is
s
io

n
 (

a
.u

.)

 

 

Ethanol (n=1.36)

P500 nm

P475 nm
P450 nm
P425 nm



www.manaraa.com

162 

 

 

 

 

 

However, the electric field at the (1, 1) LSPR-SPP resonance is of weaker intensity 

compared to the electric field at (-1, 0) resonance. The electric field at 633 nm appeared 

to be more intense in air, whereas it was lower when the platform was immersed in water. 

This was due to the presence of the (-1, 0) resonance peak close to 633 nm for a 3D 

nanosensor with 500 nm periodicity located in air. In contrast, the electric field at 785 nm 

was significantly higher within the apex of the truncated cone and the bottom surface of 

the hole compared to that obtained in air at 785 nm. There was a high absorption at the 

base of the truncated nanocone due to the LSPR absorption properties of the 3D 

nanosensor. Similar results are expected when the platform is immersed in a polar 

organic solvent such as ethanol (n=1.36) based on its simulated optical transmission 

shown in Figure 7.6.   

7.3.3 Effect of plasmonic tunability on SERS  

As shown in Figure 7.7, the SERS spectra of the 4-NTP molecules (1 mM) were 

collected on different 3D nanosensors in two different media (air and water) and also for 

two wavelengths of incident light (633 and 785 nm).  Using the 633 nm laser, the SERS 

signals of 4-NTP integrated for the s NO2 mode (1337 cm
-1

) were stronger for 3D 

nanosensors with periodicities of 500 (3.2×10
4 

 counts) and 425 nm (2.5×10
4
  counts) 

when the signal was collected in air compared to water (Figures 7.7A and 7.7B).  

When the 785 nm laser was used, the SERS intensities of 4-NTP were stronger for both 

3D nanosensors, P500 (5.4×10
3 

counts) and P425 (4.1×10
3
 counts) when collected in 

water compared to air (Figures 7.7C and 7.7D). These phenomena are also related to the 

tuned plasmonic bands of the 3D nanosensors in air and water as shown in Figure 7.4. 

We observed similar responses for 3D nanosensors with periodicities of 475 nm and 450 

nm (Figure 7.8).  
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Figure 7.7 SERS spectra of 4-NTP adsorbed on the 3D nanosensors with different 

periodicities, medium (air and water) and wavelength of incident light. a) P500 nm 

and b) P425 nm periodicities at 633 nm incident light in air (red) and water (blue); 

c) P500 nm and d) P425 nm periodicities at 785 nm in air (red) and water (blue). 

Acquisition time for each spectrum was 3 s with 5 accumulations.  Base line 

correction was applied to all spectra. A +5000 a.u. offset was applied to both red 

spectra in a and b. A +1000 a.u. offset was applied to both blue spectra in c and d. 

These offsets were applied to represent the data in a more comparable fashion. 
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Figure 7.8 SERS spectra of 4-NTP adsorbed on the 3D nanosensors with different 

periodicities, medium (air and water) and wavelength of incident light. a) P475 nm 

and b) P450 nm periodicities at 633 nm incident light in air (red) and water (blue); 

c) P475 nm and d) 450 nm periodicities at 785 nm in air (red) and water (blue). All 

the experimental conditions are the same as Figure 7.7. 
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We also observed a decrease in 4-NTP SERS signal when the periodicity was decreased 

from 500 nm to 425 nm, which was related to the dependence of the plasmonic bands on 

periodicity. For instance, from 500 nm to 425 nm, the plasmonic band is blue-shifted to 

the wavelengths below 600 nm in both simulations and experiment (Figures 7.3A and 

7.3C). 

7.3.4 SERS mapping of hot spots on 3D plasmonic nanosensors  

In order to evaluate the detection limit of our 3D nanosensors, platforms were 

functionalized with a 100 attomolar (aM) solution of the 4-NTP. The transmission optical 

image of the array of P500 3D nanosensors is shown in Figure 7.9A. The SERS mapping 

was performed on the selected area in red shown in Figure 7.9A. The map was generated 

by integrating the intensity of the stretching mode of the nitro group (s NO2) in the 

1282-1400 cm
-1

 spectral range. A strong SERS intensity (bright regions) corresponded to 

the location of the 3D nanosensors, and therefore, the location of the hot spots. This is the 

case for spot 1 in Figure 7.9B. However, regions away from the 3D nanosensors 

(labelled spot 2 in Figure 7.6) show a considerably weaker SERS signal. This lack of 

enhancement was attributed to these positions containing only flat Au. As shown in the 

inset of Figure 7.9A, the relationship between the location of the 3D nanosensors in the 

optical image and the locations of strong SERS intensity was maintained.  

As a result, the detection of 4-NTP drop casted onto the 3D nanosensors was possible 

even at a concentration of 100 aM, and with a rapid acquisition time of 1 second. The 

distinguishable locations of the 3D nanosensors based on the Raman map proved the 

reproducible ability of the sensors to generate a strong signal for low concentrations of 

molecules trapped in the nanoscale hot spots. Noteworthy, as stated previously, the 

engineered 3D nanosensors allow a generation of coupled SPP and LSPR, where 

generates strong hot spots between nanoholes and nanocones. In the meantime, the 3D 
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structure of nanosensors potentially increases the surface area for attachment of probe 

molecules to the surface of the nanostructure compared to a planar structure. This effect 

has been observed in other studies for SERS substrates compared to a 2D array of 

nanosensors.
38

 For instance, in this case, the 3D nanosensors have surface area on both 

top and bottom surfaces of gold NHA membrane as well as on the nanocone itself 

compared to the planar NHA structure. 

 

Figure 7.9 Surface-enhanced Raman mapping of 4-NTP adsorbed on the 3D 

nanosensors with 500 nm periodicity in air with 633 nm incident light. Acquisition 

time for each spectrum was 1 s with 1 µm step size. a) Transmission optical image of 

3D nanosensors with overlaid SERS mapping (inset) for the area outlined with red 

dashed box. b) Raman mapping of the outlined area in panel (a). c) Spectra of the 

regions marked (1) and (2) in panel (b). No baseline correction was applied to 

spectra in panel (c).    

7.3.5 Limit of detection for 3D nanosensors  

In order to evaluate the limit of detection of such cavity-based sensors, the platforms 

were functionalized with 4-NTP at concentrations between 1 μM to 1aM. In order to 

avoid cross contamination between high and low concentration experiments, each SERS 

experiment was repeated 3-5 times onto freshly prepared arrays of 3D nanosensors 
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(P500-P425).  Furthermore, the experiments were conducted for an average of 10-15 

spots on each platform. Standard error analysis of SERS signals for three main peaks of 

4-NTP (100 aM) is shown in Figure 7.10. Figure 7.11A shows that all the main peaks of 

the 4-NTP were detectable between 1 μM to 100 aM.
44

  

 

Figure 7.10 Standard error analysis of SERS signals for three main peaks of 4-NTP 

(100 aM) at 1080 (s C-H), 1337 (s NO2), and 1575 (s C-C) cm
-1

 obtained on 15 

spots (average of 3 experiments for each spot) of the P500 nanosensors. The 

standard error bars are generated based on the obtained mean values of 895.3, 

1980.6, 1061.7 (a.u.) for the Raman intensities at 1080, 1337, and 1575 cm
-1

, 

respectively. 
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However, we observed a small but measurable change in the intensity of the SERS signal 

for 1aM 4-NTP, even though at this concentration, it was statistically unlikely to find a 

spot with a single or a few molecules trapped in the plasmonic cavity of the 3D 

nanosensors. Compared to higher concentrations of 4-NTP, there were fewer spots on the 

3D nanosensors that provided SERS signal and the signals were not stable over long 

exposures. In most of the 2D plasmonic substrates for SERS, providing a reproducible 

global signal requires at least a homogeneous monolayer of the probe molecule attached 

onto the surface.
38

 The advantage of nanostructures with an embedded cavity can be 

highlighted here as they provide a better opportunity to trap the molecule in the nanoscale 

hot spots compared to equivalent 2D structures. 

Reliable Raman signal collected from these 3D nanosensors was obtained for 

concentrations down to 100 aM.  This can be clearly observed by evaluating the intensity 

of the main peak of NO2 (Figure 7.11A inset). Comparing the signal at 100 and 1 aM, it 

is apparent that the signal has mostly vanished for 1 aM. These measurements yield a 

limit of detection of ~100 aM (Figure 7.11A). 

Due to the fact that altering the conditions of the experiment plays a key role in obtaining 

the SERS signal for different structures, the measurements for 100 aM 4-NTP were 

repeated with microscope objectives of different numerical apertures (N.A.). Increasing 

the N.A. of the objective resulted in an enhanced SERS signal (compare the main peak of 

NO2 in Figure 7.11B). The SERS signals were enhanced almost two times when 

increasing the N.A. from 0.5 to 0.75 and three times when increasing the N.A. up to 0.9.  

By increasing the N.A. of the microscope objective, the laser beam was more confined at 

the apex of the nanocone and the bottom of the nanohole resulting in a more efficient hot 

spot and LSPR. It can also be beneficial to decrease the laser spot even further to be more 

focused on the 3D nanosensors, thereby excluding the scattering from flat Au regions 
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around the hot spots. To evaluate the sensitivity of different 3D nanosensors based on 

their periodicities, the SERS signals have been collected with the same concentration of 

100 aM. As shown in Figure 7.11C, a decremental trend is observed for the SERS signal 

when the periodicity of the platforms was decreased from 500 to 425 nm. These results 

have the similar trend as compared to measurements performed with 1 mM 4-NTP. This 

trend was clearly observed, as shown in the inset of Figure 7.11C.  

 

Figure 7.11 SERS spectra of 4-NTP adsorbed onto 3D nanosensors collected by 

using 633 nm incident laser in air. a) Different concentrations (1 aM-1 mM) of 4-

NTP adsorbed on the 3D nanosensors with 500 nm periodicity; b) The effect of 

numerical aperture and magnification on SERS spectra of 100 aM 4-NTP absorbed 

on the 3D nanosensors; c) SERS spectra of 100 aM 4-NTP adsorbed on to the 3D 

nanosensors. Baseline correction was applied to all spectra. SERS signals of the 

main NO2 peak are shown within each inset in each panel. 

7.3.6 Estimation of a SERS enhancement factor  

Generally speaking the definition of the SERS EF can be considered as the ratio between 

the SERS intensity per adsorbed molecule and the normal Raman intensity per bulk 

molecule. However, in SERS, the EF for a given molecule varies with the opto-geometric 
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conditions of the SERS measurement and corresponding reference measurement.
45

 The 

determination of the number of molecules that yield the Raman signal and their 

contribution to the EF is not trivial and may lead to erroneous estimations. The ensemble 

of parameters that need to be considered when performing a SERS experiment, such as 

probing a single molecule or multiple molecules, the orientation of the molecules in the 

experimental system, the spatial distribution, or the experimental limitations in 

resolution, can only be used to approximate an EF.  

The Raman signal is enhanced through both the excitation and the emission processes as 

shown in Equation 2:
46

  

      (            ) 
  (       ) 

               
(2) 

where E(νexcitation) and E(νRaman) are the local electric-field EFs at the incident frequency 

(νexcitation) and at the Raman Stokes frequency (νRaman), respectively. However, since the 

plasmon frequency width is large compared to the Raman Stokes shift; both EM fields 

are often in resonance and/or pre-resonance with the plasmon band. Therefore, an 

approximation is to assume that E(νexcitation) and E(νRaman) are the same, leading to an EF 

proportional to F = |E(νexcitation)|
4
. In such an approximation, the matching of the 

excitation laser line with the plasmon frequency is an essential condition to obtain large 

Raman surface enhancements. In order to establish the relationship between the 

nanostructured surface and the SERS activity of the platform, the EFs have been 

determined. The determination of the EF in SERS is a prerequisite to quantify the 

enhancement of the Raman signal. The surface Raman EF can be estimated by comparing 

the measured SERS intensities (ISERS) with the non-enhanced Raman scattering intensities 

(INE) as shown in Equation 3:
47,48
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The EF obtained in equation 3 is calculated based on the number of molecules that are 

statistically located in the confocal excitation volume and their associated SERS signals. 

The Raman intensity of the main peak of 4-NTP, the stretching mode of the nitro group 

(νs NO2), was used as the reference peak for these calculations. In order to obtain the 

surface Raman EF for the sensors, we obtained the Raman signals of 1 mM solution of 4-

NTP on a blank (sensor-free) substrate. Based on the concentration, the number of 

molecules that will be placed in the confocal volume can be calculated as number of 

molecules = confocal volume × concentration × NA= 10
-15

 L × 10
-3

 mole/L × 6 ×10
23

 

molecules/mole = 6 × 10
5
 molecules. This number represents NNE with the Raman 

intensity of 2 × 10
2
 (INE) for s NO2. The number of molecules in 100 µL of 100 aM 

solution of 4-NTP can be calculated as 10
-16

×100×10
-6

= 10
-20

 mole which represents 10
-

20
×6×10

23
= 6×10

3 
molecules.  For the similar situation one can calculate the number of 

molecules in 100 µL solution of 100 aM 4-NTP drop-casted onto the sensors to 

determine the number of adsorbed molecules in the confocal region for SERS 

measurement. For this, the surface area covered the used nanosensor (P500) is used 

which is around 2.5×10
3
 µm

2
. Considering the number of molecules in the 100 µL, we 

can then estimate the number of molecules adsorbed in the confocal region (~1 µm
2
) to 

be 6×10
3 

/2.5×10
3
 = 2 molecules (NSERS)  with the SERS intensity of 8 × 10

3
 (ISERS) for s 
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NO2. In both cases a X100 (N.A.= 0.9) objective was used. Therefore, a surface Raman 

EF of 1.2×10
7
 was achieved for 100 aM 4-NTP from a femtoliter plasmonic focal 

volume.       

 

Figure 7.12 Sensitivity of sensors represented by SERS signals of s NO2 with 

respect to the Log [Concentration] between 1 aM and 1 µM. 

 

For 100 aM concentration, there are about two or three molecules within the focal spot. 

Noteworthy, about four nanostructures are located within the same area. Therefore, to 

obtain a SERS signal, the molecules should be adsorbed within these hot spots. In our 

experiments performed with 100 aM concentration, most of our measurements have 

shown SERS activity as opposed to lower concentrations (1 aM). However, some 
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individual nanostructures appeared to be SERS inactive presumably due to the absence of 

the probe molecules or structural defects. Such EF obtained for a 100 aM solution in a 

femtoliter plasmonic cavity represents the promising chemical sensitivity of these 3D 

nanosensors (Figure 7.12). 

Although the SERS intensities do not provide a linear relationship with respect to 

concentrations, as shown in Figure 7.12, there is a linear relationship between the 

intensities of signals and the logarithmic concentrations of the solutions between 1 µM 

and 1 aM. This arises from the fact that SERS is a surface sensitive technique and is 

dependent on the number of molecules located in the hot spots to generate signal. Having 

said that, one molecule located at the hot spot can generate a strong signal, whereas a 

large amount of molecules located outside of the hot spots may generate no signal. In 

order to determine the sensitivity of the sensor, one can use the 
  

     
 , which can be the 

corresponding slope (1265) of the shown linear regression in Figure 7.12. 

7.4 Conclusions  

In this work, for the first time, the capability of cavity-based plasmonic nanosensors is 

demonstrated for SERS-based molecular sensing. These nanosensors provide 

extraordinary optical transmission properties, which can generate strong SPP and LSPR 

coupling. These phenomena have been shown here by simulated and experimental optical 

transmission measurements. The experimental results were also in good agreement with 

the FDTD calculations for EM field distributions at the plasmonic bands of the 

nanosensors. In the meantime, these structures represent a plasmonic tunability with 

respect to the media of the experiment and also the wavelength of the incident light. 
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These 3D nanosensors also provide a remarkable molecular limit of detection of 10
-16

 M 

for a probe molecule (4-NTP) with a short acquisition time of 1 second. Consequently, a 

reliable EF of ~10
7
 is achieved for these sensors for an extreme low concentration of 100 

aM from a femtoliter plasmonic probe volume. Reproducible SERS signals have been 

collected on the 3D nanosensors with concentrations down to 100 aM providing the 

spatial distribution of hot spots on the plasmonic substrate. It is also shown that by 

increasing the N.A. of the objectives, an enhancement occurs for the SERS signals 

obtained on these sensors proving the confined strong LSPR coupling in the NHA-NCA 

interface. The strong LSPR coupling of these nanosensors can introduce them to other 

spectroscopic techniques such as SEF, SEIRA, and even tip-enhanced Raman 

spectroscopy (TERS) in which there is better control over the polarization of light. Of 

even greater interest, the plasmonic tunability of these sensors can be used for 

simultaneous optical trapping and surface-enhanced detection.   
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Chapter 8  

8 Conclusions and outlook 

Plasmon-mediated surface-enhanced detection techniques in particular surface-enhanced 

Raman spectroscopy (SERS), have opened a wide spectrum of applications, especially in 

the ultra-sensitive detection of biomolecules.
1-8

 In the present thesis, we have investigated 

new developments towards fabrication of ultra-sensitive plasmonic platforms designed 

for SERS measurements, and more importantly, the integration of these platforms into 

organized micropatterns providing a tool for controlled study of a biomolecule of interest 

over the cells surfaces.  

An introduction summarizes the principles of plasmon-mediated surface-enhanced 

techniques and the fundamental principles of the distinct enhancement mechanisms of 

SERS are developed in Chapter 2. Subsequently, two commonly-used fabrication 

techniques namely NSL and EBL, and the advantages and limitations of these techniques 

have been discussed in detail in Chapter 3. 

With the desire to enable the controlled positioning and growth of cells over a substrate, a 

newly-developed micropatterning technique of biocompatible thin films of fluorocarbon 

polymer has been introduced in Chapter 4. These micropatterns have shown successful 

controlled positioning of both conventional cell lines and those that were transfected with 

a variety of receptors. The potential programming capabilities of these substrates has 

been further investigated for complex neuronal networks to provide promising isolation 

and controlled connection not only for the projections of neurons, but also for the spines, 

the small regions within the projections where neurons communicate. This was evidenced 

by high resolution imaging using atomic force microscopy.  
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We also used a sensitive plasmonic platform fabricated by NSL, as a low-cost and high 

throughput technique to be integrated with the micropatterns for the first time for 

biosensing of glycans over the cells using a Raman reporter (Chapter 5). Micropatterns 

have been employed to provide single cells trapped onto the homogenous sensitive 

plasmonic windows fabricated by NSL. This approach was used for accurate confocal 

SERS mapping of glycans over the cells to differentiate cancerous from non-cancerous 

cells based on the level of glycan expression over the cells surfaces. By applying slight 

alterations for these plasmonic platforms, they can also be used for other advanced 

spectroscopic techniques such as surface-enhanced spectroscopy (SEF) or TERS. For 

instance, by adding a thin dielectric layer over these plasmonic structures, one is able to 

perform SEF of a probe molecule over this platform. Moreover, due to the high spatial 

resolutions provided by TERS, these platforms can also potentially be used for mapping 

the protein distributions at small biological structures such as neuronal spines. These 

patterns not only surpass the difficulty of isolating the neuronal connections due to their 

intrinsic random connections, they also provide new alternatives to probe biomolecules of 

interest present at spines using TERS, which provides high resolution topographical 

images and chemical information.        

The second goal of the thesis was focused on development of new plasmonic structures 

for ultra-sensitive detections. In Chapter 6, we demonstrated the fabrication of 

homogenous tetrahedral nanopyramids using NSL to generate stronger plasmonic hot 

spots and more surface area for a molecule of interest to adsorb over the surface of the 

plasmonic structure. A complete theoretical description and experimental optical 

characterization of these nanostructures were provided in Chapter 6 in addition to their 

SERS activity. Since the nanostructures were fabricated on a conductive substrate, ITO, 

they would be beneficial for electrochemical studies. This advantage was later employed 

for the biosensing application of probing electrochemical characteristics of a protein over 
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the surface of these plasmonic structures.
9
 These nanostructures can easily be tuned to be 

fabricated with different metals or a mixture of metals to generate new plasmonic bands. 

This provides a fine tunability of this structure to detect a probe molecule in a specific 

spectral region based on the newly-generated plasmonic bands caused by the presence of 

the heterometalic nanostructure. Moreover, NSL provides a simple method for fabrication 

of different plasmonic nanostructures with high efficiency. These platforms offer 

potential applications for industrial scale-up in order to be used in different fields. A 

promising example of a large-area nanosphere self-assembly has been reported recently 

for high throughput periodic surface nanostructures over a 1 m
2
 glass substrate.

10
 This 

process reached also a throughput of 3000 wafers/h.
10

 This opens up a full compatibility 

of this process with large requested volume in photovoltaic manufacturing and the 

fabrication of periodic nanostructures on different plasmonic devices. The aim is to use 

plasmonic resonances to enhance the efficiency of photovoltaic cells.
10

 

EBL is a commonly-used fabrication technique for complex plasmonic nanostructures. In 

Chapter 7, this technique has been employed to fabricate novel plasmonic nanocavities 

involving 3D nanostructures consisting of the arrays of nanoholes and co-registered 

nanocones. This specific tunable plasmonic nanostructure has shown the ability not only 

to generate a strong SPP, but also a promising localized SP compared to conventional 

nanoholes arrays. Strong generated LSPRs within this structure introduce this 3D 

structure as a reliable platform for ultra-sensitive SERS measurements. This platform also 

offers the plasmonic tunability in the presence of distinct media, leading to versatile 

plasmonic domains of detections for different water-soluble molecules and also those are 

soluble in organic solvents such as ethanol. Using this platform, ultra-sensitive detection 

of 4-NTP was possible at a concentration of 10
-16

 M. At such a low concentration only a 

few molecules were trapped in the nanoscale hot spots of the nanocavities. Therefore, this 

platform can be applied to detection of more complex molecules and biomolecules at low 
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concentrations, and can also be used for optical trapping while detecting a probe 

molecule using a plasmon-mediated spectroscopic technique such as SERS.
11

   

It is worthwhile to mention that the developed plasmonic platforms demonstrated in both 

Chapter 6 and 7 can also be integrated with TERS measurements for detection of a 

variety of molecules. A strong tip-tip LSPR can be generated with the presence of a 

metallic TERS tip over the sharp apex of nanopyramids shown in Chapter 6 or inside a 

nanohole over a nanocone within a single nanocavity that has been demonstrated in 

Chapter 7. Furthermore, these structures can also be integrated within the micropatterns 

described in Chapters 4 and 5, or microfluidic devices for providing sensing windows 

within these channels for dynamic or static chemical and biochemical measurements.
7,12

   

Aside from that, recent ultrafast SERS methods have been also introduced using pico- 

and femtosecond excitation sources. This includes surface-enhanced femtosecond 

stimulated Raman spectroscopy (SE-FSRS), surface-enhanced coherent anti-Stokes 

Raman spectroscopy (SE-CARS), and time-resolved SE-CARS (TR-SE-CARS). These 

recently developed techniques have convincingly demonstrated the compatibility of 

ultrafast pulses with highly enhancing plasmonic substrates. Molecular-plasmonic studies 

on the femtosecond time scale of nuclear motion has been enabled using these newly-

developed techniques. More importantly, as plasmons induce new chemical changes in 

proximal molecular species, bond-making and -breaking processes can also be closely 

examined by these techniques.
13

 It is worthwhile to mention that by combing these 

ultrafast spectroscopic techniques with TERS, one would be able to obtain nanoscale-

resolution topographical images along with ultrafast chemical information with high 

signal-to-noise ratios. This opens up new alternatives for real-time detections with high 

spatial resolution.    
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Plasmon-medicated surface-enhanced techniques, in particular SERS, are capable of 

providing ultra-sensitive chemical information of various samples with high signal-to-

noise ratio. SERS has emerged as a significantly matured technique over the past decades 

since its discovery,
14,15

 with a general agreement upon the enhancement mechanism.
16-18

 

SERS also provides clear proof of ultra-sensitive detections down to single-molecule 

sensitivity.
19-22

 The development of recent commercial substrates for SERS also leads to 

diverse range of applications with easy-to-access platforms.
23,24

 Thus, SERS appears to 

play a more significant role as detection techniques in future for a variety of applications 

ranging from materials science to life sciences and surface chemistry.
2,25-28

 All these 

techniques involve the use, the tunability and the tailoring of surface plasmon by 

developing novel surface nanostructures. This is the key element for further improvement 

in such techniques towards ultra-high sensitivity for both in vitro and in vivo detections.  
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